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EXECUTIVE SUMMARY

USING RECYCLED CONCRETE AS
AGGREGATE IN CONCRETE PAVEMENTS

TO REDUCE MATERIALS COST

Introduction

The main objective of this project was to evaluate the effects of

using aggregate produced from crushed concrete pavement as a

replacement for natural (virgin) coarse aggregate in new pavement

mixtures. A total of ten different concrete mixtures containing

recycled concrete aggregate (RCA) were designed to meet the

requirements of the Indiana Department of Transportation

(INDOT) specifications. These mixtures included three different

RCA replacement levels of 30%, 50%, and 100% (by weight of the

natural coarse aggregate) and two different cementitious systems

(plain system—Type I Portland cement only and fly ash system—

80% of Type I Portland cement and 20% of ASTM C 618 Class C

fly ash). The scope of the project included the evaluation and

comparison of several properties of RCA and natural aggregates,

and evaluation and analysis of the effects of RCA on concrete

properties.

All mixtures were first produced in the laboratory (trial

batches), then subsequently reproduced in a commercial ready-

mixed concrete plant. Each mixture produced in the ready-mixed

plant was used to prepare several types of specimens for

laboratory testing. The tests performed on fresh concrete included

determination of slump and air content. The mechanical proper-

ties of the hardened concrete were assessed by conducting

compressive strength, flexural strength, modulus of elasticity,

and Poisson’s ratio tests.

Concrete durability was assessed using a wide array of

measurements, including: rapid chloride permeability (RCP),

rapid chloride migration (RCM), electrical impedance spectro-

scopy (EIS), surface resistivity, free shrinkage, water absorption,

freeze-thaw resistance, and scaling resistance tests.

After the ten concrete mixtures were tested, the original

gradation was modified and six additional concrete mixtures were

developed and produced in the laboratory. The original aggregate

gradation was modified by adjusting the fine-to-coarse aggregate

ratio and adding a mid-size #11 aggregate (Dmax 5 K in.). A

mid-sized RCA coarse aggregate was introduced that was crushed

from mixed-use concrete debris. These mixtures were used to

study whether different sizes and proportions of virgin and RCA

aggregates could be used to produce an ‘‘optimized blend’’ that

improved one or more concrete characteristics, and to examine the

influence of using a non-pavement concrete as RCA in new

concrete mixtures.

Findings

Test results indicated that the properties of plain (no fly ash)

concrete mixtures with 30% RCA as coarse aggregate were very

comparable to, and in some cases even better than those of the

control concrete (0% RCA). Plain concrete mixtures with 50%

RCA and 100% RCA showed a reduction in durability and

mechanical properties; however, they still passed all of INDOT’s

specifications requirements. The one exception was for the

100%RCA and no fly ash mixture in which the w/cm was

increased to 0.47 to achieve workability (exceeding ,0.45 w/cm

target).

The use of fly ash improved the strength and durability of RCA

concrete, especially at later ages. In particular, the properties of

concrete with 50% RCA coarse aggregate were similar to the

properties of the control concrete. Similarly, the mechanical and

durability properties of the mixture with 100% RCA coarse

aggregate and 20% fly ash were better than those of a similar

mixture prepared without fly ash. Even though, when compared

to the fly ash concrete with 100% virgin aggregate, the mechanical

and durability properties of the 100% RCA concrete were lower,

it still met minimum requirements imposed by INDOT’s

specifications.

The test results obtained from the six additional modified

mixtures indicated that modifying the aggregate gradation with a

mid-size RCA made from mixed-use concrete did not benefit

either compressive or flexural strength values. The failure to

improve concrete strength with these modified aggregate grada-

tions may have been due, at least in part, to the quality of the mid-

sized RCA aggregate used to modify the gradation.

The interactive benefit-cost analysis (BCA) developed under

this project showed that using RCA can reduce aggregate costs,

resulting in measureable project-wide savings. Cost savings, or

lack of savings, related to using RCA can be readily identified

using either project-specific inputs or general estimates.

In conclusion, this project demonstrated that quality, durable

concrete that contains some level of RCA coarse aggregate made

from old concrete pavements can be used in new concrete

pavement structures. This practice can lead to good resource

management, quality concrete pavements, and potential cost

savings.

Implementation

Considering the limited scope of this study (only one source of

RCA, one Class C fly ash, and two natural aggregate sources),

and potential variability in RCA characteristics, it is recom-

mended that the amount of RCA coarse aggregate be limited to

30% in plain concrete and 50% in fly ash concrete to ensure

adequate quality of the pavement concrete.

The field trials demonstrated that RCA as 30% and 50% of the

coarse aggregate in a concrete mixture without fly ash can be

successfully produced and placed in slip-form paving using

standard INDOT practices by traditional paving equipment.

Future use should explore higher percentages of RCA replacement

in shoulders and non-highway construction until confidence and

experience is developed using RCA.

The benefit-cost analysis developed under this project is a useful

tool to examine the costs of using RCA compared to natural

aggregate in pavement structures. The BCA can identify cost

savings and provide information valuable to users in resource

management decisions.
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1. INTRODUCTION

1.1 Background

Recycling, sustainability and environmental stew-
ardship are all concepts that are becoming more
common in many facets of life, including concrete
paving. The greatest potential for reusing old concrete
at a high value is to use it as aggregate in new
concrete. Many times, this old concrete sits in
unsightly piles, is land filled or is used as random fill
or sub-base material.

On the other hand, natural aggregates, which
consist of crushed stone or gravel and sand, constitute
the major component of pavement concrete, occupy-
ing from 70% to 80% of the volume of concrete
mixtures (1). Natural aggregate resources are vast but
finite, and aggregate resources are being depleted,
especially near urban areas (2). Environmental regula-
tions and land use policies further limit the opening of
new quarries or the expansion of existing aggregate
quarries. Natural aggregate costs are expected to rise
with scarcity of sources and increasing haul distances
(2). Using recycled concrete aggregate (RCA) as a
substitute for natural (virgin) aggregates is a way to
potentially address these economic and environmental
concerns.

1.2 Literature Review

Concrete pavements are 100 percent recyclable (2).
Over the past 30 years, many DOTs have recycled
concrete as aggregate back into concrete pavements
with somewhat mixed results. There have been some
failures, but many other pavements are still performing
well after several decades of service (2). The use of RCA
in concrete may alter the properties of the concrete and
may affect its performance. RCA often has lower
specific gravity and higher absorption values compared
to those of natural aggregate (2,3) which, in turn, may
affect the workability of fresh concrete (3–6). Various
researchers measured specific gravities that ranged from
2.1 to 2.6, and absorption values that ranged from 3.3%

to 9.25% for different RCA.

In hardened concrete made with RCA, many
researchers generally found decreased values of com-
pressive strength (up to 30%), tensile strength (up to
40%), density (up to 5%) and modulus of elasticity (up
to 40%) (7–10). These properties tended to decrease
with increased levels of replacement of virgin aggregates
with RCA when all other mix design parameters
remained constant (7–11). An exception to this trend
was found by Etxeberria et al. 2007 (10) where concrete
with 30% RCA exhibited higher tensile strength than
concrete without RCA.

Several solutions were proposed by other researchers
that might help ensure the consistent quality of concrete
made with RCA including:

N Controlling the percentage of RCA (7,8,10)

N Using pozzolanic materials (12)

N Modifying the mixing methodology (13)

N Proportioning mixtures using equivalent mortar volume
(EMV) method (14)

N Controlling the initial moisture state of the aggregates (9)

A more thorough literature review is available in
Appendix A of this document and in reference (15).

1.3 Research Objectives

The main objective of this study was to evaluate the
effects of using recycled concrete aggregate (RCA) as a
replacement for natural coarse aggregate on the
fresh and hardened properties of concrete pavement
mixtures.

1.4 Scope of Work

The scope of study included evaluation and compar-
ison of several properties of RCA and natural
aggregates, evaluation and analysis of the effects of
RCA on fresh and hardened concrete properties, and
modification of aggregate gradations and mixture
composition in an attempt to improve the properties
of RCA concrete. All mixtures were designed to
meet the requirements of the Indiana Department of
Transportation (INDOT) specifications Section 501
(QC/QA procedures) (16) as listed below:

N Minimum amount of Portland cement: 400 lb/yd3

N Target water-to-cementitious ratio (w/cm): 0.42 (¡0.03)

N Minimum Portland cement/fly ash ratio: 3.2 by weight
(mass)

N Target air content of 6.5% (allowable range 5.7%–8.9%)

N Minimum flexural strength at 7 days: 570 psi (4 MPa)

A target slump of between 1.25–3.00 inches was
adopted from the INDOT’s Section 502 specifications
for slip-form paving (non-QC/QA procedures).

1.5 Test Program

The materials used in this study are described in
Table 1.1. Mill certificates for the cement and fly ash
used are given in Appendix B.

Two different #8-size natural coarse aggregates (N1
and N2) were used in order to provide information on
the effects of different natural coarse aggregate
characteristics on the ranges of concrete properties
made with and without RCA. The #8 RCA (8R) was
crushed from a recently removed INDOT concrete
pavement (SR 26 at Lafayette) that showed good
durability performance during its service life of more
than 35 years. The #11 RCA (11R) was produced from
construction debris of various unknown sources.

This part of the study involved design and evaluation
of two distinctive sets of mixtures: laboratory mixtures
(L) and 10 plant-produced mixtures (P). The designs of
nine laboratory mixtures were based on INDOT-
approved mixture compositions supplied by concrete
paving contractors (as shown in Table B.1, Appendix
B) and refined through a trial batching process in the
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lab (L). These mixture compositions are shown in
Table B.2 of Appendix B. Each of the lab-produced
trial batch mixtures (L) was tested for slump, density
and air content. Flexural beams were tested after 7 days
of moist curing. The summary of the test results is
presented in Table B.2, Appendix B.

The 9 mixture designs then were reproduced in
a ready-mixed plant with adjustments in w/cm and
admixtures to achieve the target range of slump (1.25–
3.00 inches) and air content (target 6.5%, allowable
range 5.7%–8.9%) specified by INDOT. To differentiate
the mixtures, a specific labeling scheme was developed
for identifying each mixture, as shown in Figure 1.1.

In the end, 10 concrete mixtures were produced in the
ready-mixed plant, as presented in Table 1.2. Mix-10
(P-M10-1N1-C) was an approximate replicate of Mix-1
(P-M1-1N1-C), because P-M1 was re-mixed three times
during its production, which might have affected the
concrete properties.

TABLE 1.1
Materials used in the project

Material Description Specific gravity (SSD) Absorption (%)

Cement Type I Portland cement conforming to ASTM C 150 3.15 NA

Fly ash Class C fly ash met the requirement of ASTM C 618 and

AASHTO M 295

2.62 NA

Coarse aggregate N1 #8 Dolomitic Limestone 1, obtained from Delphi Plant, IN.,

produced by U.S. Aggregates, Inc., INDOT source #2421

2.74 1.8

Coarse aggregate N2 #8 Dolomitic Limestone 2, obtained from Newton County

quarry, Kentland, IN., produced by Rogers Group,

INDOT source #2445

2.69 2.7

Coarse aggregate R #8 RCA, mostly gravel, crushed from State Road 26 Indiana

by Milestone Contractor LP, IN

2.42 5.3

Coarse aggregate 11N1* #11 Dolomitic Limestone 1 sieved from #8N1 2.74 1.8

Coarse aggregate 11R* #11 RCA crushed from various types of concrete stockpiled

by Reith-Riley Company, IN

2.45 5.4

Fine aggregate #23 natural sand produced by Vulcan Materials located at

Indiana (source #2183-Swisher Sand and Gravel)

2.61 1.4

NA 5 not applicable.

*Used in modified mixtures only.

Figure 1.1 Mixture designation scheme for laboratory and
ready-mixed batches.

TABLE 1.2
Mixture proportions for concrete made in the ready-mixed plant (lbs/yd3)

Mixture designation

P-M1-

1N1-C

P-M2-

1R-C

P-M3-

.3R.7N1-C

P-M4-

.5R.5N2-F

P-M5-

.3R.7N1-F

P-M6-

.5R.5N2-C

P-M7-

1R-F

P-M8-

.3R.7N2-F

P-M9-

1N2-F

P-M10-

1N1-C

Cement 522.5 510 512.5 432.5 432.5 515 445 437.5 437.5 512.5

Fly ash — — — 100 100 — 105 100 110 —

Water 232 239 219 212 220 224 220 227 214 214

Fine aggregate 1570 1480 1520 1510 1480 1480 1420 1450 1480 1580

Coarse aggregate #8 N1 1690 — 1190 — 1130 — — — — 1730

Coarse aggregate #8 N2 — — — 800 — 830 — 1130 1700 —

Coarse aggregate #8 RCA — 1610 510 820 480 830 1580 490 — —

Air entraining agent* 1.1 1.6 1.2 1.2 1.2 1.1 1.5 1.2 1.3 1.3

Water reducer* 1.9 2.0 2.0 2.1 1.9 1.7 2.4 2.1 1.8 2

w/cm 0.44 0.47 0.43 0.40 0.41 0.43 0.40 0.42 0.39 0.42

*fl oz/100 lbs cementitious.
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A comprehensive suite of tests was used to assess
both the plastic and hardened properties of various
concretes (see Table 1.3). The implementation of this
suite of tests required fabricating 56 specimens and a
small outdoor test slab (2.59649619) from each of the

plant mixtures. The test slabs were placed in order to
test ease of placement, ability to finish, and long-term
outdoor exposure. The outdoor slabs are located at the
IMI mixing plant off US 25, north of West Lafayette,
IN. Table 1.4 provides a detailed listing of the number

TABLE 1.3
Tests performed for this project

Aggregate test Standard

Sieve analysis and fineness modulus AASHTO T 27

Specific gravity and absorption* AASHTO T 84

Soundness (brine freeze and thaw)* ITM 209

L.A. abrasion AASHTO T 96

Organic impurities test in fine aggregate AASHTO T 21

Percent of mortar in RCA ASTM C 295 (Modified)

Uncompacted void content of coarse aggregate AASHTO T 326

Atomic Absorption/Emission Spectrophotometer (VarianH SpectrAA–20) for determining the concentration of Potassium ion in leachate from

coarse aggregates.

Dionex Ion Chromatograph with IonpacH AS4A Analytical column for determining Chloride and Sulfate ions in leachate from coarse aggregates.

Concrete test Standard

Fresh concrete (plastic phase) Slump* AASHTO T 119

Air content, pressure method* AASHTO T 152

Air content, volumetric method* ASTM C 173

Hardened concrete Compressive strength AASHTO T 22

Flexural strength* AASHTO T 97

Shrinkage ASTM C 157

Modulus elasticity and Poisson’s ratio ASTM C 469

Freezing and thawing (F/T)* AASHTO T 161

Electrical impedance spectroscopy (EIS) —

Surface resistivity AASHTO TP 95

Scaling ASTM C 672

Rapid chloride permeability (RCP) test AASHTO 277

Rapid chloride migration (RCM) test NT Build 492

Water absorption ASTM C 1585

Air dry density —

*Test required by INDOT.

— 5 No specific standard being used. (The detail procedures can be found in reference (15).)

TABLE 1.4
Inventory of test specimens and tests performed

Test Type of specimens (size, in) Number of specimens/mix Total specimens/mix

Compressive strength Cylinder (468) 35 58

Modulus of elasticity and Poisson’s ratio Cylinder (468) 35 58

Density Cylinder (468) 35 58

Rapid chloride permeability (RCP) test Cylinder (468) 35 58

Rapid chloride migration (RCM) test Cylinder (468) 35 58

Electrical impedance spectroscopy Cylinder (468) 35 58

Surface resistivity Cylinder (468) 35 58

Coefficient of thermal expansion (CTE) Cylinder (468) 35 58

Water absorption Cylinder (468) 35 58

Flexural strength Prism (666621) 12 58

Freeze/thaw Prism (364615) 5 58

Length change Prism (363611.5) 3 58

Scaling Slab (7.561063) 2 58

Field slab* 1 58

*Size: 2.59649619.
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of specimens used for each type of test for each mixture
design and the total number of specimens produced at
the ready-mixed plant.

Besides the original nine lab mixtures, six additional
mixtures were developed and batched in the laboratory
using a modified gradation of aggregates (with respect
to the original mixtures). These mixtures were used to
study if the natural and RCA aggregates can be used in
different proportions to produce an ‘‘optimized blend’’
which can improve some of the concrete characteristics.
During this part of the project, mid-size #11 (Dmax 5

K in.) aggregates were used to fill a gap in the
combined gradation. The specific labeling scheme and
the proportions of those additional lab mixtures are
presented in Figure 1.2 and Table 1.5.

2. TEST RESULTS AND ANALYSIS

This chapter presents the experimental findings
related to the nine laboratory mixtures and 10 plant-
batched mixtures. These findings are presented in two
sections, aggregate test results (Section 2.1) and concrete
test results (Section 2.2). Results for the lab mixtures
with modified gradations are presented in Chapter 3.

2.1 Aggregate Test Results

In all aggregate tests, aggregate sources were tested
individually and not as a combined blend of materials
unless otherwise stated. In addition to the aggregate
tests identified in Table 1.3, the following tests on
aggregate also were performed.

N The percent paste remaining on the RCA was estimated

using a common petrographic method of point counting
(17).

N The leachate potential were measured for each coarse

aggregate by crushing it into a powder that passed the

#100 sieve, diluting a 20-gram sample of the powder

with 80 grams of deionized water, and analyzing the ions

contained in that solution using atomic absorption and

dionex ion chromatography.

The results are discussed below and more details are
provided in Appendix C.

2.1.1 Sieve Analysis and Fineness Modulus

Sieve analysis test results showed that the fine aggregate
used in this project met INDOT standard specification for
#23 aggregate and all coarse aggregates used met the
specification for #8’s (see Figure C.1 in Appendix C).

Figure 1.2 Designation scheme for mixtures with modified
RCA gradations.

TABLE 1.5
Mixture proportions for concrete with modified gradation (lbs/yd3)

Materials

O-M1-.3#8R.25#

11R.45#8N1-C

O-M2-.3#11R.7

#8N1-C

O-M3-.3#

11R.7#8R-F

O-M4-.3#

11R.7#8R-C

O-M5-.3#8R.25#

11R.45#8N1-F

O-M6-.3#11N1.7

#8N1-C

Cement 515 515 400 515 440 515

Fly ash — — 100 — 100 —

Water 211.2 215.0 210.0 232.0 225.0 230.0

Fine aggregate 1330 1350 1300 1300 1320 1350

Coarse aggregate

#8N1

790 1260 — — 775 1300

Coarse aggregate

#11N1

— — — — — 550

Coarse aggregate

#8R

530 — 1200 1200 515 —

Coarse aggregate

#11R

450 535 510 510 435 —

Air entraining

agent*

0.8 0.5 0.9 0.9 0.8 0.8

Water reducer* 2.0 1.5 1.5 1.1 2.0 2.0

w/cm 0.41 0.42 0.42 0.45 0.42 0.45

*fl oz/100 lbs cementitious.
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The combined aggregate gradations for all mixtures fell
between INDOT’s specified upper and lower limits. When
these gradations were compared to an 8-18 gradation
(18), all of them had excessive amounts of aggregate
retained on the K in. sieve and insufficient aggregates
retained on the #8 sieve (see Figure C.2; more details
regarding the use of the 8-18 band can be found in
reference (18)).

Based on the coarseness factor (CF) and workability
factor (WF) identified using the Shilstone coarseness
factor chart (18), all combined gradations used in the
mixtures were classified as sandy, with CF ranging from
71.5 to 74.8 and WF from 44.7 to 47.9 (see Figure C.3,
Appendix C).

2.1.2 Specific Gravity, Absorption and L.A. Abrasion

The aggregate test results for specific gravity,
absorption and percent mass loss obtained from the
L.A. abrasion test are shown in Table 2.1. The bulk
specific gravity (SSD) of #8 coarse RCA (2.42) was
lower than that of the #8 N1 (2.74) and #8 N2 (2.69).
The #8 RCA had higher absorption (5.3%) than the
#8 natural aggregates N1and N2 (1.8% and 2.7%

respectively). The absorption of #8 RCA exceeded the
maximum absorption value for AP aggregate specified
by INDOT (5.0%).

The L.A. abrasion test determines the toughness/
hardness of the aggregates and indicates how readily
the aggregate may break down during batching,
construction, transportation and handling. Although
the natural aggregates had approximately 4% to 7%

lower mass losses than the RCA, all the aggregates used
in this research satisfied INDOT’s requirement of 40%

maximum mass loss for AP aggregate (16). See
Table C.1, Appendix C for additional details.

2.1.3 Soundness (Brine Freeze and Thaw)

The aggregates’ susceptibility to degradation upon
exposure to repeated freezing and thawing cycles and
other environmental conditions was estimated using
ITM test 209 Soundness of Aggregates by Freezing and
Thawing in a Brine Solution. These tests were performed
at INDOT’s Office of Materials Management lab.

The #8 RCA had a higher mass loss (16.4%) than
that of either of the #8 natural aggregates (#8 N1 5

0.5%; #8 N2 5 0.9%). The fine aggregate used in this
project had a mass loss of 7.8%. Based on these test, all
fine and #8 coarse aggregates used in this project
satisfied INDOT’s ITM 209 maximum allowable mass
loss requirements of 30% for AP coarse aggregate and
12% for PCC fine aggregates. See Table C.2 and
Appendix C for additional details.

2.1.4 Organic Impurities in Fine Aggregate

The organic impurities test results indicate that the
fine aggregate used in this research did not contain high
levels of organic compound that might otherwise harm
the concrete. The suspension colors of three samples
were all lighter than color #3 in the standard organic
color plate. See Figure C.5, Appendix C for more
details.

2.1.5 Percent of Attached Mortar

The #8 RCA contained mortar or paste attached to
the original aggregate. Determining the percent of
mortar attached is important because higher reclaimed
mortar contents are associated with lower specific
gravity, increased absorption and lower abrasion
resistance of the RCA. The percent mortar was
estimated using a method of point counting, similar
to the procedure described in ASTM C 457. The results
of this test indicate that, by volume, 28.9% of the RCA
used in this study is old mortar, 68.5% is original
aggregate and 2.6% is aged asphalt. Details of the
process and results can be found in Table C.3,
Appendix C.

2.1.6 Uncompacted Void Content of Coarse Aggregate

The test was performed in accordance with
AASHTO T 326 (method A) to determine the loose
uncompacted void content, U, of the coarse aggregate
used. Results are shown in Table 2.2. According to
AASHTO T 326 greater U-values indicate higher
angularity, less sphericity, rougher surface texture or
some combination of these three factors. Results
indicate that the RCA was more rounded and spherical,
and/or had a smoother surface texture than the natural
quarried aggregates used (N1 and N2). Likewise, results
suggest that this RCA was easier to compact than the

TABLE 2.1
Physical properties of aggregates used in this study

Aggregates properties

Coarse aggregate Fine aggregate

#8 N1 #8 N2 #8 R #11R INDOT limit #23 Natural sand

Bulk specific gravity 2.69 2.62 2.30 2.33 — 2.56

Bulk specific gravity (SSD) 2.74 2.69 2.42 2.45 — 2.61

Apparent specific gravity 2.82 2.82 2.62 2.66 — 2.70

Absorption, % 1.8 2.7 5.3 5.4 5%, max 1.4

L.A. abrasion test (% mass loss) 29 31 36 34 40%, max NA

NOTE: NA 5 not applicable. — 5 missing data.
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natural crushed quarried aggregate used, which may
allow for slightly easier consolidation of the concrete
mixture. Other researchers have reported similar values
for crushed limestone and dolostone (48.2-51.2) and
lower values for uncrushed gravel (42.2) (19), suggest-
ing that the shape, angularity and texture of the RCA
are between the values for a rounded river gravel and a
crushed stone.

2.1.7. Ion Content Determination Results

The ion chromatography tests measured certain water
soluble ions from the coarse aggregates used in this
research. Results are presented in Table 2.3 and discussed
below. Testing procedures are described in Appendix C.

The concentration of chloride ions in #8R leachate
(851 ppm) was more than two times higher than that
detected in leachates from #8N1 (377 ppm) and #8N2
(395 ppm). Higher chloride content in #8R’s leachate
was most likely the result of the application of chloride-
based deicers when the source concrete for this
aggregate was in service. The sulfate content in the
leachate from #8R (39 ppm) was about one third of
that of #8N1 (120 ppm) and #8N2 (106 ppm).

The potassium content in the leachates was deter-
mined by atomic absorption/emission spectrophotome-
try test. Test results indicated that the leachate from
#8R has a relatively high potassium content (239 ppm),
which is about 8 times higher than that observed in
leachates from #8N1 (30 ppm) and #8N2 (32 ppm).
Although it is impossible to determine the exact reasons
for the increased levels of potassium ions, possible
sources may be from potassium-rich deicers, if used, or
from the hydrated and unhydrated cement present in
the mortar attached to the surfaces of RCA particles.
Aggregate #8N1 has similar potassium, chloride and
sulfate ions contents to #8N2.

2.2 Concrete Test Results

Several tests were conducted on the fresh and
hardened concrete to characterize its properties and

estimate its performance and durability. Results are
presented and discussed below and more details are
provided in Appendix D.

2.2.1 Fresh Concrete Test Results

The slump and air content were measured within 15
minutes after the mixing process was completed. The
density (unit weight) was also measured. The results are
listed in Table 2.4 for both the laboratory and plant-
batched mixtures.

During the laboratory trial batching, the w/cm,
amounts of air entraining agent, and amounts and
types of water reducers were varied in order to
determine a combination that would best meet target
values and meet INDOT’s requirements for pavement
concrete for w/cm (#0.45), slump (1.25–3.00 inches)
and air content (5.7% to 8.9%). As shown in Table 2.4
all the laboratory and plant mixtures satisfied the target
values for slump (1.25–3.00 inches) and air content
specified by INDOT. All but one mixture, P-M2 met
the w/cm requirement of # 0.45.

The air content in fresh concrete was measured using
both the pressure and volumetric methods. Results
from these two methods were similar, and the
differences between the two measurements ranged from
0.0%–0.75%, with an average difference of 0.27% over
18 mixtures. (See Appendix D and Figure D.2 more
details).

2.2.2 Hardened Concrete Test Results

The mechanical properties and durability of the
hardened concretes were evaluated in accordance with
several different ASTM, AASHTO and INDOT stan-
dardized test procedures (as identified in Table 1.3).
Test results are presented and discussed below and
additional details can be found in Appendix D and
reference (15).

2.2.2.1 Mechanical properties and density. The
mechanical properties of concrete evaluated included:
compressive strength, flexural strength, modulus of
elasticity and Poisson’s ratio. In addition, the air-dried
density of concrete also was determined.

Compressive strength. The compressive strengths
of 468 in. (1006200 mm) cylinders were measured in
accordance with AASHTO T 22 after 3, 7, 14, 28, and
56 days of moist curing. The results are presented in
Figure 2.1.

TABLE 2.2
Uncompacted void of coarse aggregates

Aggregate

Uncompacted void of coarse

aggregate (U)

#8 Dolomitic limestone 1 (N1) 49%

#8 Dolomitic limestone 2 (N1) 48%

#8 RCA (R) 44%

TABLE 2.3
Ion content of the coarse aggregate leachates

Type of coarse aggregate

Average of potassium ions

concentration (ppm)

Average of chloride ions

concentration (ppm)

Average of sulfate ions

concentration (ppm)

#8 N1 30 377 120

#8 N2 32 395 106

#8 R 239 851 39
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The compressive strengths of all mixtures increased
with age. The concrete mixture with 30% RCA (P-M3-
.3R.7N1-C) had the highest compressive strength at all
ages while the mixture with 100% RCA and no fly ash
(P-M2-1R-C) had the lowest compressive strength at all
ages beyond 7 days. It should be noted that the higher
w/cm (0.47) of mixture P-M2 undoubtedly contributed
to these lower strengths. The plain concrete mixture
with 50% RCA (P-M6-.5R.5N2-C) had strengths
similar to those of the control mixtures without RCA
(P-M10-1N1-C).

For concrete with 30% RCA, the use of fly ash did
not improve the compressive strength (compare P-M3
and P-M5). However, for concretes with 50% and 100%

RCA, the use of fly ash in the mixture did improve the
compressive strength after 7 or more days of moist
curing. In fact, the use of fly ash improved the 50%

RCA mixture (P-M4) so much that it achieved one of
the highest strength values at later ages. The use of fly
ash also improved the strength of the 100% RCA
mixture (P-M7) to values similar to those obtained by
the fly ash mixture without RCA (P-M9-1N2-F). Thus,
the use of Class C fly ash improved the long-term
compressive strength of concretes with RCA content
higher than 30%. Despite the differences in strengths,
all concrete mixtures developed strengths adequate for
concrete pavement construction.

The properties of the natural coarse aggregates also
affected the compressive strength, as shown by the
results for P-M5-.3R.7N1-F that had compressive
strengths approximately 10% higher than those of P-
M8-.3R.7N2-F. (see also Figure D.4, Appendix D).
Some of the increased strength for concrete made with
N1 may be because of the tougher, denser and less
porous properties of N1 compared to N2 (as shown in
Table 2.1).

Flexural strength. Flexural strength tests were
conducted in accordance with AASHTO T 97 and test

results are summarized in Figure 2.2. Prismatic speci-
mens, 666621 in. (15061506540 mm), were tested
after 3, 7, 28, and 56 days of moist curing.

All mixtures satisfied INDOT’s minimum require-
ment for flexural strength at 7 days (570 psi [4.0 MPa]).
The results for five of the mixtures (P-M1, P-M2, P-M3,
P-M6 and P-M9) showed some irregular trends that
may reflect the inhomogeneity of concrete, a difference
in specimen moisture content, and/or a fluctuation in
applied loading rate rather than actual variations in
overall concrete strength.

The plain concrete with 50% and 100% RCA had
lower flexural strengths than the plain concrete with 0%

and 30% RCA, and the lowest strengths of all mixtures
tested at 56 days. Fly ash contributed to the develop-
ment of higher flexural strengths in concrete containing
50% and 100% RCA at later ages increasing the
flexural strengths to levels that were similar to or higher
than those of the control mixtures (as shown in
Figure D.5, Appendix D). In fact, the mixture contain-
ing 100% RCA with fly ash (P-M7) had flexural
strengths similar to those of fly ash mixtures with 0%

RCA made with N2 (P-M9). (Additional discussions
and plots can be found in Appendix D).

Modulus of elasticity and Poisson’s ratio. The
modulus of elasticity and Poisson’s ratio were obtained
by testing 468 in. (1006200 mm) cylindrical specimens
after 28 days of moist curing in accordance to ASTM C
469. The test results are summarized in Figure 2.3.

As expected, aggregate appears to dominate the
modulus of elasticity results, with the highest values
associated with mixtures that contained N1 aggregate
(both with and without fly ash). Comparing similar
mixtures (all with fly ash), the use of N2 aggregate led
to a significant (22%) decrease in modulus when
compared to mixtures containing N1 (P-M 5 vs. P-M
8) and a slight (6%) increase compared to mixtures
containing RCA (P-M9 vs. P-M7). In addition, there

Figure 2.1 Compressive strengths of concretes mixtures at different ages.
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was a slight decreasing trend of the modulus as the
amount of RCA increased in the fly ash mixtures
(compare P-M9 to P-M8 to P-M4 to P-M7). Concrete
mixtures with fly ash had 3%–9% higher modulus of
elasticity than that of plain concrete at 50% RCA (P-
M4 vs. P-M6) and 100% RCA (P-M7 vs. P-M2). At
30% RCA, the fly ash did not increase the modulus
elasticity of the concrete (M5 vs. M3).

Overall, N1 mixtures had the highest modulus of
elasticity, with the plain concrete with 30% RCA being
the highest (P-M3). The plain concrete with 100% RCA
(P-M7) had the lowest modulus of elasticity of all
concretes tested. It can be noted that aggregate from
source N1 had the highest density (bulk specific gravity)
and the RCA had the lowest density of the aggregates

used in this study. Therefore, the use of aggregate N1
appears to contribute to a stiffer concrete as seen as a
higher modulus but also improved compressive
strengths. The two control mixtures (P-M1 and P-
M10) had comparable modulus of elasticity and
Poisson’s ratio even though their compressive strengths
and flexural strengths were somewhat different. This
supports the statement, that the modulus of elasticity
for these mixtures was dominated by the aggregate
properties.

As shown in Figure 2.3, the Poisson’s ratio of
mixtures with fly ash were generally lower than the
Poisson’s ratios for the same mixtures without fly ash.
No specific correlations were found between the level of
RCA replacement in the mixtures with the Poisson’s

Figure 2.3 Modulus of elasticity and Poisson’s ratio of concrete mixtures with different proportions of RCA.

Figure 2.2 Flexural strength development for different concrete mixtures.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/18 9



ratio values for either plain or fly ash mixtures. INDOT
does not have specific requirements for modulus of
elasticity and Poisson’s ratio for pavement concrete, but
these values are considered in some levels of the
MEPDG design and will influence the pavement design.

Density. RCA had a lower specific gravity than
either of the natural aggregates used. As the percent
RCA in concrete increased and the natural aggregate
content decreased, the air-dry density of each concrete
produced in the plant decreased (see Figure D.3,
Appendix D). Additional details are available in
Appendix D and reference (15).

2.2.2.2 Concrete durability properties. Several tests
were conducted to evaluate the durability properties of the
different concrete mixtures. These tests include rapid
chloride permeability (RCP) test, rapid chloride migration
(RCM) test, electrical impedance spectroscopy (EIS),
drying shrinkage, water absorption tests, freeze/thaw test,
length change measurement and scaling test (as shown in
Table 1.3).

Rapid chloride permeability (RCP) test. ASTM C
1202 RCP tests were conducted on 28- and 56-day old
wet-cured samples obtained from each plant mixture.
The results are presented as ‘charge passed in coulombs’
(Figure 2.4 and Table D.1). Increased coulomb values
correlates to increased potential for penetrability of
chloride ions (Cl2) into the concrete. All charges passed
presented in this document have been adjusted for the
‘‘joule effect’’ that accounts for changes related to
temperature variations of the solutions during the test
(see Appendix D and reference (15) for more details).

For any given concrete mixtures, the charge passed
at 56 days was about 7% to 44% lower than the charge
passed at 28 days. Concretes with fly ash had 11% to
57% lower Cl2 penetrability at 56 days than plain
concretes with similar RCA content, indicating the
positive role of fly ash in reducing porosity. Comparing
concrete with and without RCA, using 30% RCA
in concrete did not significantly affect chloride ion
penetration. Higher RCA contents (.50%) led to
increased RCP values. These increased charges passed
may reflect the increased contribution of conductive
ions associated with RCA rather than indicating the
actual difference in the concrete porosity (i.e., the value
for leached chloride ions measured for RCA was 851
ppm, as compared to 395 ppm for N1 and 377 ppm for
N2.).

The results of the RCP tests also were used to
calculate the equivalent steady-state chloride diffusion
coefficient from the Nernst-Plank equation. Details of
the process and results are given in Appendix D.

An attempt to find a quicker and simpler way of
determining the RCP test results was made in this study
by predicting the final charge passed based on the
measurements of the initial current at the time the
charge was applied at the beginning of the RCP test.
Results shown in Figure 2.5 indicate that there exists a
strong linear relationship between predicted and actual
passing charge for plain concrete mixtures, but clearly
this procedure will not be acceptable for use with fly ash
mixtures, as indicated by a very low value R2 5 0.19.

Another approach to predicting the total charge
passed based on the initial current was examined by

Figure 2.4 Average RCP charge passed for concretes with different % RCA.
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finding the correlation between final charge passed and
theoretical bulk resistance (R). As shown in Figure 2.6
the relationship between bulk resistance and charge
passed from RCP test results is nearly linear. These
results suggest that the RCP six-hour cumulative charge
measurement may be predicted using quick early
measurements of the initial current. The equations used
for calculations and additional details are discussed in
Appendix D.

Rapid chloride migration (RCM) as per NT
Build 492. The RCM test performed in this study
was similar to the RCP test but required a lower applied
potential over a longer (24-hour) period and visual
examination of the actual Cl2 penetration. This test
was performed using the NT Build 492 specification
(21). From these results the non-steady-state migration
coefficient (Dnssm) was calculated. Based on the value of
non-steady-state migration coefficient (Dnssm), only
plain concrete with 50% RCA was classified as not
suitable for aggressive environment (Dnssm . 16.10212

m2/s). All others concretes had moderate resistance to
chloride ion penetration (8x10212 m2/s , Dnssm ,

16x10212 m2/s). The fly ash concretes generally had

improved chloride ion penetrability resistance (lower
Dnssm) compared to similar mixtures without fly ash,
except for concrete with 100% RCA. The procedures,
results and additional discussion of the RCM test are
available in Appendix D and Table D.5.

Electrical impedance spectroscopy (EIS) & surface
resistivity. Based on the EIS test results, the resistivity
of concrete generally decreased with increased amounts
of RCA in the concrete. Concrete with fly ash generally
had improved resistivity over that of plain concrete,
especially at later ages (see Figure 2.7). The EIS results
predicted similar behavior as the RCP test, with a
correlations between test results having a trend line
with an R2 value of 0.763 (Figure D.7, Appendix D).

In this research, surface resistivity tests also were
conducted to estimate the concrete’s resistivity. The EIS
56-day results predicted behavior similar to that predicted
by surface resistivity test for all plain concrete samples
(ages 56-176) and for fly ash samples that were of similar
ages (56-69 days) to the EIS sample. Two of the five fly
ash concrete samples that were older (126 and 156 days
old) with 30% and 50% RCA, showed significantly higher
surface resistivity compared to all other surface resistivity
and 56-day EIS specimens. A similar increase was not
seen for older specimens without fly ash (see Table D.6
and Figure D.8, Appendix D).

Additional data and discussions are presented in
Appendix D and the results of the RCP, RCM, EIS and
surface resistivity tests are summarized in Table D.5 in
Appendix D.

Total drying shrinkage. The shrinkage test results
are presented in Figure 2.8. In general, the shrinkage of
concrete with RCA tended to be higher than that of
concrete with N1 natural aggregate, especially at 100%
RCA replacement levels (consider mixtures P-M7 and
P-M2). However the shrinkage of concrete made with
100% natural aggregate N2 (P-M9) was very compar-
able to or higher than the shrinkage of RCA concrete
with up to 50% RCA (P-M3, P-M4 P-M5 and P-M8).
Comparing the shrinkage of mixture P-M3 with the
shrinkage of mixture P-M5 (similar mixtures with and
without fly ash), it can be seen that the fly ash mixture
shrunk more, suggesting that the use of fly ash also
increased the drying shrinkage. For concretes with
100% RCA, the total drying shrinkage exceeded the

Figure 2.5 Calculated (predicted) charge passed vs. actual
(measured) charge passed for 56 days old concretes (plain and
fly ash).

Figure 2.6 Relationship between charge passed and bulk
resistance of concrete based on RCP test results. Figure 2.7 EIS results of resistivity compared to % RCA.
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critical limit of -0.05% after 100 and 150 days with the
use of fly ash (mixtures P-M7_1R-F and P-M2_1R-C
respectively).

Water absorption. The results of the water absorp-
tion test (based on ASTM C 1585) for concrete from
nine different mixtures are shown in Figure 2.9, and the
average absorption rates are given in Table 2.5.

Although key factors such as age and w/cm are not
consistent between samples some general trends can be
observed which suggest that concrete with fly ash had
lower absorption rates compared to the comparable
mixtures without flyash (except for mixture P-M9). The

absorption rates for concrete containing RCA fell
within the range of absorption rates found in concretes
made with the two natural aggregates (P-M9 and P-
M10). In fact, concrete containing 30% and 50% RCA
and fly ash had the lowest absorption rates of all
concrete tested. Caution is suggested in interpreting
these results as the short conditioning period of the
samples has been reported to generate a wide range of
relative humidity values, which influences the test
results (detail can be found in reference (20)).

Freezing and thawing. The concrete from all 10
plant-batched mixtures showed good freezing and

Figure 2.8 Total shrinkage of concrete mixtures.

Figure 2.9 Water absorption test results on concretes from different plant-produced mixtures.
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thawing (F/T) durability based on AASHTO T 161
Procedure A. All concretes had relative dynamic
modulus of elasticity (RDME) values above 90% after
being subjected to up to 350 freezing and thawing
cycles, which corresponds to durability factors (DF)
.90 (as shown in Figure 2.10).

INDOT specifies that the expansion of F/T beams
should not exceed 0.06% to qualify a given aggregate as
AP aggregate for acceptable use in concrete pavements.
Unfortunately, the comparator was damaged during
the testing of the first five mixtures (P-M1, P-M2, P-
M3, P-M4, and P-M5) and the length change measure-
ments collected are invalid (showing unrealistic values,
for example ¡1.2% expansion for a known high-
quality AP aggregate and no evidence of cracking in the
beams). However the length change results for other
beams (M-6, M-7, M-8, M-9 and M-10) with 0% to
100% RCA all had expansions of 0.03% or lower
satisfying the INDOT requirement for AP quality

aggregate and correlating well with high durability
factors (see Figure D.9, Appendix D).

Scaling. Specimens fabricated from each of the 10
different plant-produced mixtures were exposed to 50
cycles of freezing and thawing while ponded with 4%

calcium chloride (CaCl2) solution. Based on visual
observations of the surfaces of the concrete specimens, it
appears that all concrete experienced very light scaling.
The scaling manifested itself as the loss of thin layers of
paste (mortar) from small areas on the surfaces of the
specimens. However, there was not a single specimen for
which this surface scaling exposed coarse aggregate
particles. Following the guidelines given in ASTM C 672
Standard Test Method for Scaling Resistance of Concrete
Surfaces Exposed to Deicing Chemicals the surface
conditions of all specimens were rated ‘‘1’’- very light
scaling, as it is shown in Figure 2.11.

More detailed scaling results and data are available
in reference (15).

TABLE 2.5
Water absorption test results on concretes from different plant-produced mixtures*

% RCA Mixture designations

Initial absorption rate

(mm/s0.5)

Secondary absorption

rate (mm/s0.5) Age of sample, days w/cm

0% P-M10-1N1-C 0.0011 0.0009 56 0.42

0% P-M9-1N2-F 0.0014 0.0009 70 0.39

30% P-M3-.3R.7N1-C 0.0011 0.0007 100 0.43

30% P-M5-.3R.7N1-F 0.0007 0.0005 148 0.41

30% P-M8-.3R.7N2-F 0.0008 0.0004 77 0.42

50% P-M6-.5R.5N2-C 0.0011 0.0008 127 0.43

50% P-M4-.5R.5N2-F 0.0007 0.0004 177 0.40

100% P-M2-1R-C 0.0014 0.0008 102 0.47

100% P-M7-1R-F 0.0011 0.0005 91 0.40

NOTE: Fly ash mixtures are identified in boldface italics.

Figure 2.10 Changes in relative dynamic modulus of elasticity (RDME) for plant mixture concretes when subjected to freezing
and thawing cycles.
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3. CONCRETE WITH MODIFIED
AGGREGATE GRADATION

3.1 Background

The aggregate gradation of a mixture affects
both plastic and hardened concrete properties (18).
Controlling and modifying the amount of aggregate
on each sieve can lead to better aggregate packing, and,
if proportioned appropriately, can contribute to
increased workability and durability without increas-
ing water or cement content (18), as well as lead to
reduced cementitious usage and more economical
mixtures. As shown in Section 2.1.1 and Appendix C,
all combined gradations were classified as sandy, and
none of the combined gradations fell entirely within the
8-18 band.

The purpose of modifying the aggregate gradation in
this study was to evaluate the effects of such modifica-
tions on selected concrete properties in an attempt to
investigate whether 1) a more continuous particle size
distribution could improve hardened concrete proper-
ties, 2) an increased workability could be achieved to
compensate for the effect that the increased absorption
by the aggregate may have on the mix, and 3) RCA
produced from sources other than pavements can be
used successfully in a concrete paving mixture. The
effects of modified gradations were evaluated by
changing the ratio of fine-to-coarse aggregates (from
47% to 43%, based on mass) and by adding a mid-sized
aggregate (#11’s with dmax50.5 in) to the mixtures.
Reith-Riley Company produced the #11R recycled
aggregate from piles of mixed-use concrete waste. In
this portion of the project, the natural aggregates
previously described and used in the plant mixtures
were combined with #11 aggregates listed in Table 1.1.

3.2 Concrete Properties

A total of three modified gradations were used in this
study to prepare six lab batch mixtures. The slump and
air content were measured, and two flexural beams and
nine 4x8 cylinders were cast from each mixture. The

details of the mixtures with modified gradations are
presented in Table E.1, Appendix E.

3.2.1 Plastic Properties

The target air (5.7%–8.9%) and slump (1.25–3.00 in)
values were met in all but one mixture (O-M1 slump 5

3.3 in), as shown in Table E.2. Due to the variations in
w/cm, amount of water reducer and air-entraining
agent used, and the batching process (lab vs. plant), the
direct influence of the type of aggregate and its
gradations on the slump and air content cannot be
clearly assessed. However, in some of the mixtures with
a modified gradation, the workability (slump) remained
constant or increased, even though the w/cm and/or
amounts of WR were reduced (see the details in
Appendix E, Table E.3).

3.2.2 Flexural Strength

The 7-day flexural strengths of concrete made with
modified aggregate gradations were compared to the
flexural strengths of the concretes with non-modified
gradations batched in the plant and in the lab (see
Figure E.2, Appendix E). The plain concrete with
modified gradation and no RCA (O-M6) had the
highest 7-day flexural strength value of all mixtures
used in this study (740 psi), approximately 9% to 17%

higher than that of the other control mixtures (P-M1
and P-M10). For modified gradation mixture concretes
with 30% and 55% RCA, the average 7-day flexural
strengths were very comparable, varying only 1 to 7
percent, to the average flexural strengths of other
concretes with 30% and 50% RCA (consider O-M2 vs.
P-M3 and L-M3; O-M1 vs. P-M6 and L-M6; and O-
M5 vs. P-M4 and L-M4).

Compared to the non-modified gradation plant and
lab mixtures with 100% RCA, modified gradation
concretes with 100% RCA had 13%–18% lower 7-day
flexural strengths (P-M2 vs. O-M4; and P-M7 and L-
M7 vs. O-M3). In addition, the 7-day flexural strengths
of these concretes (O-M3 and O-M4) were lower than

Figure 2.11 Scaling of P-M2-1R-C subjected to 4% CaCl2 after 50 cycles.
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INDOT’s minimum requirement for 7-day flexural
strength (570 psi). Based on the results obtained, it can
be stated that the use of modified (more continuous)
gradation increased (up to 17%) the 7-day flexural
strength of the control concrete (made with 100%
natural aggregate), but did not improve the 7-day
flexural strength of the RCA concrete. This may relate
more to the quality of the #11R and the quality of
concrete from which #11R was crushed than the
gradation used.

3.2.3 Compressive Strength

The 7-day and 28-day compressive strength results
for modified and non-modified (plant) mixtures are
presented in Appendix E, Figures E.3 and E.4. The
results indicate that concretes with modified gradations
had slightly lower compressive strength than the
concrete with non-modified gradation (less than 15%
difference). Fly ash did not seem to affect the
compressive strength of concrete with the modified
gradation since the 28-day compressive strength results
of modified concrete with and without fly ash are
comparable (O-M1 vs. O-M5 and O-M4 vs. O-M3 had
only 1%–3% differences).

3.2.4 Rapid Chloride Permeability

The results of the average charge passed obtained
during the rapid chloride permeability (RCP) test for
non-modified (plant) and modified aggregate gradation
mixtures are shown in Figure E.5, Appendix E. Four
out of six mixtures with modified gradation (0% and
55% RCA without fly ash, and 55% and 100% RCA
with fly ash) had slightly lower coulomb values
compared to the corresponding plant mixtures (7%–
24% lower) indicating a slightly better resistance to
chloride ion penetration. These results contradict the
RCP results from the other two mixtures with a
modified gradation (30R-C and 100R-C) in which their
coulomb values were approximately 28%–38% higher
than those measured for the corresponding plant
concretes. Therefore, no relationship was clearly
identified that consistently related the modified grada-
tion to the resistance to chloride ion penetration. As
seen with the plant mixtures, the use of fly ash
significantly reduced the charge passed compared to
similar concrete mixtures without fly ash (49%–57%).

4. BENEFIT-COST ANALYSIS OF USING RCA IN
NEW CONCRETE PAVEMENTS

4.1. Background

As the infrastructure continues to age and concrete
structures are replaced, the availability of concrete
waste to be crushed into RCA is expected to remain
steady, if not increase. This project has demonstrated
that RCA made from INDOT concrete pavements can
be used successfully in new concrete pavements as a
replacement for natural coarse aggregate. Putting RCA

back into the pavement structure, either as base
material or in the concrete mixture is a much more
sustainable practice then treating it as waste. Some
agencies already have implemented zero-waste practices
of reusing all materials generated from reconstruction
projects back into the new structure.

In order to determine the cost-effectiveness of
crushing and reusing concrete pavements as aggregate
in new concrete pavements, the following analysis was
developed. Although this project did not address the
feasibility of using RCA in the base layers, that option
was included in the BCA model.

4.2. Benefit-Cost Analysis (BCA) Model

In order to provide the user with flexibility and ease
of updating as needed, the Benefit-Cost analysis model
was developed as an Excel spreadsheet (see Appendix
F). This model is able to consider the use of RCA as
coarse aggregate for new concrete and/or as base
material (#8 and/or #53). This model also includes
the ability to estimate the amount and cost of RCA that
could be produced from an existing concrete pavement.

4.2.1. Input Parameters

Most of the input parameters for this cost benefit
analysis are not static and are expected to change either
with each project or over time. To give the engineer and
other decision-makers the flexibility of using this
analysis for a variety of situations most of the fields
are not fixed, but have been developed to require input
values from the user. Many of these inputs are unique
to each project, such as hauling distances and amount
of aggregate needed, while other inputs may be
common for many different projects, such as landfill
costs or new aggregate cost, but are likely to change
periodically.

Figure 4.1 outlines the input fields used in this model
and provides an example of typical pavement structural
inputs. The cells highlighted in yellow are required
project-specific information. Cells highlighted in blue
indicate values that are calculated by the model from
the user inputs.

As shown in Figure 4.1 the spreadsheet calculates
how much total aggregate is needed for the project, how
much RCA will be needed and how much RCA will be
available from the old concrete pavement (PCCP). All
of these values are calculated based on the user’s inputs
of how much of the coarse aggregate in the concrete
mixture will be RCA, how much (if any) will be used
for the base and the dimensions and extent of both the
old PCCP and the new pavement being built. The
variability in the efficiency of the crushing operation
also is considered when calculating the amount of RCA
that may be produced from an old structure. The
percent of the concrete structure that becomes RCA
depends on the aggregate gradation being produced,
the crusher being used and other aggregate production
variables. In the production of #8 aggregate, a value of
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50% of the total mass of concrete removed becoming
RCA is not unreasonable, but it is possible for this
efficiency to be improved.

The example given in Figure 4.1 is not meant to
represent any particular project, but many of the values
are similar to the INDOT field trial placement on the
shoulder of US 231 in West Lafayette, IN (as described
in Chapter 8). Other assumptions behind the calcula-
tions used in this section of model include the following
assumed densities:

1. PCCP is 2 tons/cubic yard (t/cyd)

2. Broken PCCP slabs 5 1.75 t/cyd

3. #8 RCA is 1.5 t/cyd

4. #53 RCA is 1.4 t/cyd

The cost of removal of the old PCCP is not considered
in this example because that cost will be incurred whether

the concrete is crushed for RCA or not. If a situation
occurs in which any one of these assumption are no longer
valid then the user must adjust the calculations in the
relevant cell(s) of the spreadsheet.

Figure 4.2 is a continuation of the BCA spreadsheet
input requirements that includes costs of hauling the
old PCCP to the crushing operation or to the landfill;
the cost of hauling the RCA from the production site to
the concrete batch plant; and the cost of hauling the
natural aggregate from the quarry/production plant to
the concrete batch plant. It is assumed that the cost of
hauling concrete from the batch plant to the construc-
tion site will be the same whether RCA is used or not,
so this cost is not considered here.

The section of the spreadsheet shown in Figure 4.2
also allows for user input for crushing costs. Crushing
costs and hauling costs will vary and may depend on

Figure 4.1 Pavement structural inputs fields.

Figure 4.2 Additional input parameters—aggregate and hauling related costs.
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whether the crusher is brought to the construction
site and a separate mobilization fee is charged, or
the crushing operation is off-site at an established
crushing operation. Estimates are given based are
current cost estimates suggested by industry, but costs
may vary greatly depending on several variables such
as the location of the construction relative to a
crushing facility; availability of mobile crushing
operations and mobilization costs; amount of mate-
rial being crushed; and the producer’s equipment and
experience to name a few. The more old concrete
there is to remove and crush the more efficient an on-
site crusher becomes since mobilization of equipment
is often a large portion of the expense. Some typical
crushing costs are provided in Figure 4.2 for the
user’s convenience in case project specific costs are
not available.

As noted previously, the yellow cells shown in
Figure 4.2 are required user inputs that are based on
project-specific information, and standard values are
available for input into the green cells if project-specific
information is not available. Cells highlighted in green
are necessary inputs for which standard suggested
values are available if project-specific values are not
available. Assumptions and input explanations are
given in the bottom row of Figure 4.2.

4.2.2. Output Values

An example of all the final output values from this
BCA is provided in Figures 4.3 and 4.4. The inputs
given in Figures 4.1 and 4.2 were run through the
model to provide the final outputs shown in Figures 4.3
and 4.4. As previously noted, all blue cells indicate
fields that are calculated based on user inputs. The
breakdown of unit costs is provided in Figure 4.4.

The example given in these series of tables represents a
hypothetical INDOT project completed in the Lafayette
area using Delphi Limestone natural aggregate, the RCA
being produced by a local aggregate producer by
removing and crushing a nearby INDOT pavement and
concrete waste having to be hauled to a facility north of
Indianapolis.

4.3. Cost Savings Realized

The outputs given in Figures 4.3 and 4.4 are taken
from the BCA spreadsheet using the inputs given in
Figures 4.1 and 4.2. In this example, RCA replaced
approximately 50% by volume (47% by mass) of the
coarse aggregate in a concrete paving mixture used to
pave one mile of a 3-lane highway with concrete
shoulders. The cost savings realized using #8 RCA at
this level of replacement in the concrete mixture is $2.26
per ton of RCA, for a project-wide savings of $5,517,
assuming landfill costs are not a factor. If RCA also is
used for 100% of the base material, then an additional
savings of $22,658 is realized, for a project-wide savings
of $28,172.

If landfill costs are a factor and the old PCCP is
brought to a waste facility instead of used to produce
RCA, the cost difference is dramatic. In the given
scenario, producing #8 RCA reduces the generated
waste by 50% and producing #53 RCA reduces the
generated waste to 40% of the original mass. Also in
this scenario, the old PCCP is used to produce RCA for
100% of the base material and 50% of the coarse
aggregate in the new concrete pavement. Therefore, the
only waste is the fine material produced as a by-product
of RCA production (which could be used in other
applications not considered here). The cost of land-
filling these fines only, compared to landfilling all of the

Figure 4.3 Example of BCA output.
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old PCCP if no RCA was produced, leads to a savings
in landfill costs of $279,280. Combining the cost savings
realized by partial replacement of the natural aggregate
with RCA ($28,172) with the savings in landfill costs
($279,280) the total project-wide savings of $307,452
would be realized for this hypothetical 3-lane mile-long
project.

4.4. Land Filling of Old Concrete

Although a modest $2/ton landfill costs is used in this
BCA based on a web-search and an assumption that a
project this size may receive a bulk discount, the actual
landfill cost may be quite a bit higher. As shown in
Figure 4.5, one waste facility near Indianapolis adver-
tised a cost of $7/cyd for disposal of clean demolition
waste (facility name intentionally removed). A cost of
$7/cyd equals approximate $4.60/ton (including solid
waste fee) which demonstrates that landfill costs higher
than estimated in this example are possible.

The landfill cost estimates in this report are low
compared costs across the nation, and most likely only
will increase with time. The National Solid Wastes
Management Association reports that tipping fees
increased from an average of $8/ton in 1985 to
$34.29/ton in 2004, with averages as high as $70.53/
ton in the Northeast region (22).

Awareness has increased over recent years of the re-
usability of old concrete and of the negative environ-
mental impact of landfilling construction debris.
However there is still an estimated 517,260 tons of
demolition and construction debris entering Indiana
landfills yearly (approximately 6% of the landfill waste)
(23).

According to the www.in.gov website, only 20 of the
92 counties in Indiana have a facility that accepts
construction and demolition debris. This low distribu-
tion of facilities suggests that if any portion of old
concrete pavements need to be landfilled, a significant
haul distance is possible and related costs incurred.

4.5. Summary of Benefit-Cost Analysis

This BCA is a useful tool in estimating the savings
that can (or cannot) be realized by recycling old
concrete pavement into new aggregate. With proper
inputs this model can provide an estimate of how much
RCA can be expected from the removal of an existing
pavement, cost comparisons between using RCA verses
natural aggregate for a particular project and cost
comparisons between using the RCA in the concrete
mixture and/or in the base structure. The example given
is just one possibility of hundreds of options that may
exist in a given construction season. Cost comparisons
of different options for a single construction project can
be examined quickly and easily using this BCA
spreadsheet, aiding the engineer in making an informed
decision leading to a wise use of resources and potential
cost savings.

5. SUMMARY AND CONCLUSIONS

The RCA used in this study met all INDOT
specifications for #8 AP-quality aggregate for concrete
paving, except for the percent absorption, which was
slightly above the 5% maximum (5.3%). The lower
specific gravity of the RCA led to lower unit weights of
the concrete containing RCA.

All the concrete mixtures produced in a ready-mixed
plant satisfied INDOT’s PCCP requirements for slump
(1.25–3.00 in), air content of fresh concrete (5.7%–
8.9%) and minimum 7-day flexural strength (570 psi).
RCA decreased concrete’s workability, especially for
concrete mixtures without fly ash, however all concrete
satisfied the maximum w/cm 0.45 requirement except
for the 100% RCA mixture without fly ash (0.47 w/cm).
The adjustments to the w/cm, air entraining agent and
water reducer contributed towards achieving the target
slump and air content values, and most likely further
adjustments with admixtures could have reduced the
w/cm of the 100% RCA to within specification limits in
this study. Both the pressure and volumetric methods of
air content measurement yielded comparable sets of
results. It therefore appears that the pressure method
may be used reliably for concrete with RCA, thus
simplifying the task of air content determination.

Similar to concrete with all natural aggregates,
generally the mechanical properties of the RCA
concretes improved with age. Concrete with 30%

RCA without fly ash achieved tested values of
compressive strength, 7-day flexural strengths, elastic
modulus and Poisson’s ratio equivalent to or better
than the control mixture. When the percentages of

Figure 4.4 Breakdown of unit costs in Figure 4.3 example.

Figure 4.5 Advertised costs for facility accepting demolition waste near Indianapolis.
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RCA in plain concrete mixtures increased to 50% and
100% levels, the mechanical properties tested at 56 days
decreased, when compared to the control concrete
(plain, 0% RCA). By substituting Class C fly ash for
approximately 20% (by mass) of the cement, this
reduction of the mechanical properties was eliminated.
In fact, the use of fly ash resulted in improved
mechanical properties of concrete with 50% and 100%

RCA compared to plain concrete with the same
percentages of RCA (up to 23% and 25%, respectively).
The lower specific gravity of #8 RCA (2.42) con-
tributed to lower densities of the concrete (up to 5.4%

lower for concrete containing 100% RCA).

In terms of durability properties, the freeze-thaw
durability of all concretes was very good with DF. 90
at 350 cycles and scaling tests resulting in only very light
scaling for all concretes (rated as 1). The concrete’s
resistance to chloride ion penetration decreased in plain
concretes with higher RCA contents. At 30% RCA the
resistance of concrete was similar to the resistance of
the control concrete with 0% RCA. However, at 50%

and 100% RCA the concrete’s resistance to chloride ion
penetration decreased most likely due to the more
porous matrix of RCA than natural aggregates and the
higher ionic species content in RCA. The use of fly ash
improved the chloride resistance of all concretes such
that the 56-day measurements were similar to or better
than that of the control mixture. Therefore, these tests
showed that the durability of RCA concrete can be
improved by using fly ash as a partial replacement of
cement.

Results from the RCP testing suggest that predicting
the final current values based on the initial current is
valid for plain concretes (R2 5 0.90) but not for
concretes containing fly ash (R2 5 0.19). Comparing
RCP results with surface resistivity test results suggests
there is a good correlation between these test results for
plain concrete, but the results for fly ash concrete at
different ages do not correlate well.

Six mixtures were tested in which the aggregate
gradation was modified to contain a certain amount
of #11 (mid-size) aggregates. Results indicated that
these modified gradations increased the 7-day flexural
strength by 9%–17% for the control concrete with all
natural aggregate, but did not improve the strengths
of any of the concretes containing RCA. In fact,
strengths for some mixtures were significantly
reduced, especially those with more than 50% RCA.
The quality and types of the original concrete from
which #11R was made may have contributed to these
reduced strengths.

Comparing the resistance to chloride ion penetra-
tion (RCP) in concretes with a modified gradation
to similar non-modified gradations, the resistance
improved slightly in four concrete mixtures but
worsened significantly in two other mixtures. This
implies that there is no significant effect of modified
gradation on RCP results. Class C fly ash reduced the
permeability of RCA concrete with modified grada-
tion (49%–57% lower charge passed) compared to

that of plain concrete with the same RCA content,
but did not improve the 7-day flexural or 28-day
compressive strengths. These limited mixtures and
tests suggest that the modified gradation using natural
aggregates improved concrete properties but modified
gradations with RCA from non-pavement concrete
sources can be problematic.

Concretes with 50% RCA had properties that were
comparable to those of the control concretes when
20% of the cement was replaced with Class C fly ash.
Mixtures in this study that used 30% RCA as coarse
aggregate and no fly ash had fresh concrete properties
and developed mechanical and durability properties
that were similar to (or better than) the properties of
control (no RCA) mixtures. Concrete paving mixtures
that contain 100% RCA and fly ash can be produced
that meet INDOT specifications for fresh and
hardened concrete properties, but extra attention to
aggregate moisture, water reducer dosages and w/cm
may be necessary to achieve a mixture with appro-
priate workability.

The Benefit-Cost analysis (BCA) developed under
this project, as discussed in Chapter 4, showed that
using RCA can reduce aggregate costs, resulting in
measureable project-wide savings. Cost savings, or
lack of savings, related to using RCA can be readily
identified using project-specific data, or general
estimates.

With proper inputs this model can provide:

N An estimate of how much RCA can be expected from the
removal of an existing pavement

N Cost comparisons between using different amounts of
RCA versus natural aggregate for a particular project

N Cost comparisons between using the RCA in the concrete
mixture and/or in the base structure

This easy-to-use tool can help engineers and other
decision-makers to optimize resources and minimize
aggregate related costs.

In conclusion, this study demonstrated that RCA
crushed from existing INDOT pavements can replace
up to 100% of the coarse aggregate and still meet
INDOT’s specification for concrete paving mixtures
provided appropriate mixture design modifications (i.e.,
chemical and mineral admixtures, proper w/cm, etc.)
are undertaken. However, considering the limited scope
of this study (only one source of RCA, one Class C fly
ash and two natural aggregate sources were used), plus
the desire to maintain concrete mixture quality and
durability levels at or above current levels, and the
potential variability in the material properties of RCA,
it is recommended that for standard practices, the
amount of RCA coarse aggregate be more limited at
this time. Durable concrete that contains RCA coarse
aggregate made from INDOT’s old concrete pavements
in quantities up to 30% RCA with plain concrete, or
50% RCA with fly ash concrete, can be used success-
fully in new concrete pavement structures. This practice
can lead to good resource management, quality
concrete pavements and potential cost savings.
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6. GENERAL RECOMMENDATIONS FOR USE OF
RCA IN INDOT PAVEMENT CONCRETES

As the final outcome from this study, the following
recommendations are proposed regarding the use of
RCA in INDOT paving concretes:

N RCA should be required to meet existing INDOT
requirements for #8 AP aggregates. In addition the
following conditions are recommended:

# The Brine Freeze and Thaw Soundness requirements
should be used in place of the Sodium Sulfate
Soundness for acceptance (similar to 904.03, Note 3).

# RCA materials having absorption values between 5.0
and 6.0 percent that pass AP testing may be used if
proper handling techniques are employed, includ-
ing pre-wetting of RCA stockpiles (similar to 904.03,
Note 4).

N RCA produced from existing INDOT concrete pave-
ments is preferred, and those pavements should be
evaluated prior to recycling to identify any existing
materials related distresses that could impair the RCA’s
long-term durability. If the concrete pavement was
placed prior to the establishment of INDOT AP quality
aggregate standards and F/T durability is a concern, then
cores taken at the joints and examined by a trained
concrete petrographer can establish whether the aggre-
gate has been F/T durable.

N RCA from variable and unknown sources should not be
allowed unless they can be tested and shown consistently
to have properties passing INDOT’s AP standard and
specifications for aggregates used in concrete pavements.
Test should include ITM 210 F/T testing and ITM 209
Brine F/T Soundness testing but sulfate soundness
testing need not be required.

N The approval process for the use of RCA in INDOT
pavement concrete should include field trial batches to
ensure the ability of achieving workable concrete with the
desired w/cm and air content.

N The determination of moisture content of RCA at time
of batching is critical for proper adjustments of the mix
water. It should be noted that if the moisture content of
the RCA is less than SSD condition, then slump may
change quickly after initial batching as water is absorbed.

N A quality paving concrete that meets INDOT specifica-
tions can be produced using some amount of RCA as a
replacement for AP coarse aggregate. Replacement levels
of up to 30% RCA for plain concrete and up to 50% for
concrete containing approximately 20% Class C fly ash
can result in paving concrete with properties very similar
to concrete without RCA while using common batching
and construction practices for producing quality paving
concrete. Good quality concretes containing 100% RCA
can be produced but the use of mineral and chemical
admixtures is recommended and extra attention to
appropriate proportioning is needed.

N It is recommended that RCA be pre-wetted (i.e., aggregate
piles should be kept moist, near SSD) and the aggregate
moisture content determined with good accuracy in
accordance with ASTM C 127 and/or AASHTO T 85.

N The use of fly ash is recommended in RCA concrete,
especially at higher aggregate replacement levels since it
has been proven that fly ash generally improves the
mechanical and durability properties of most concrete

mixtures, the same properties that are often somewhat
reduced in RCA concrete.

N Using the pressure meter to determine the fresh air
content in RCA mixtures is valid, but additional side-by-
side measurements with the volumetric method are

recommended until greater confidence is achieved with
a variety of RCA mixtures and RCA sources.

N The water-soluble chloride content of RCA should be

determined for each RCA source as RCA can contain
water soluble chlorides at levels that are higher than
many natural aggregates. Elevated chlorides in the
mixture can interfere with set time, admixture behavior,
certain test results and corrosion of steel in the concrete.
If corrosion of steel is a potential concern as in reinforce
concrete elements then recommendations for maximum
total chloride content given in ACI 222 Corrosion of

Metals in Concrete should be followed.

N Use caution in interpreting the results of electrical
conductance/resistance test for estimating penetrability/
permeability of concrete that contains RCA as RCA can

contribute additional ions to the paste that may interfere
with obtaining test results that accurately reflect penetr-
ability/permeability.

N If the RCA is from more than one source than the range
of specific gravity and absorption values of the RCA
sources should be determined in accordance to AASHTO
T 85, and the range of values obtained shall be reported.
If variations in absorption or specific gravities preclude
satisfactory production of PCC mixtures, independent
stockpiles of materials will be sampled, tested, and
approved prior to use (similar to INDOT 904.03, Note
4). It is recommended that the guidelines provided by

AASHTO MP 16-10 Provisional Standard for Reclaimed

Concrete Aggregate for Use as coarse Aggregate in

Hydraulic Cement (Section 7.5) be followed, which states
specific gravities shall not vary by more than 0.100, and
absorption by more than 0.8% in a given stockpile.

N When a variety of options for using RCA are available,
an economic analysis can be conducted to determine the
optimal use of resources and realize maximum cost
savings.

N Encourage the use of RCA as a viable alternative to
natural coarse aggregate in concrete paving mixtures.
The use and availability of RCA can keep aggregate costs
competitive and result in measurable savings for new
concrete pavement construction, especially in regions in
which quality natural aggregates are less available.

N Continue to monitor the performance of the field trial
placements along the shoulders of US 231 near the
intersection of River Road (see Chapter 8).

7. RECOMMENDATIONS FOR FUTURE STUDY

This study examined several issues related to the use
of RCA in paving concrete which has led to many
answers and insights. Additional points that are
considered to be important with respect to the use of
RCA in concrete recommended for the future studies
are listed below:

N The potential effects of RCA chloride content in
accelerating corrosion, interfering with set time and
behavior of certain admixtures should be evaluated as it
is likely that RCA with elevated chloride contents will
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contribute additional chlorides to the pore solution of

concrete.

N The effect of other cementitious materials beside Class C
fly ash (e.g., slag cement, Class F fly ash and natural

pozzolans) on the properties of RCA concrete also should

be studied as they may have beneficial contributions in
the development of the application of RCA concrete.

N The effect of using RCA from sources other than

INDOT pavements on concrete properties should be
evaluated as such data will be helpful with respect to

effective utilization of recycled concrete and may lead to
additional cost savings.

N Further study of modifying the aggregate gradation

using natural aggregate to produce a more densely
packed gradation could be lead to improved fresh and

hardened concrete properties.

N Establishing a safe level at which RCA fines could be
successfully included in a concrete mixture would further

decrease the waste from a reconstruction project and

potentially increase the cost savings realized using RCA.

N The relatively higher amount of potassium ions found in

RCA’s leachate compared to that of natural aggregates

should be evaluated since higher alkali content in
concrete may lead to the increase risk of alkali-silica

reaction (ASR).

8. FIELD TRIAL PAVING OF US 231

Based on SPR 3309 project results, concrete contain-
ing RCA was placed in the shoulders of US 231 in two
trial sections, one using 30% RCA and another with
50% RCA as the coarse aggregate. Details of the paving
plan are shown in Figure 8.1 below.

Prior to placement, the mixture design was developed
based on trial batching at the on-site batch plant. Fly
ash was not available for paving and, because of
historical concerns with low early strength gains with
the cement being used, the cement content was kept
higher than typical (see Figure B.3, Appendix B for the

mill certificate for the cement used). The concrete
shoulders were placed on May 14, 2012, using slip-form
pavers and typical concrete paving techniques. Both
INDOT and the contractor sampled and tested the
fresh concrete mixture at the paving site using standard
procedures.

The following summary is based on field observations
and verbal communications at the time of placement.

Placement of the 30% RCA Concrete

Weather was sunny, light breeze mid-60s rising to
mid-70s. Mixture design used included:

# 611# Essroc cement, Logansport

# No fly ash

# Typical WR dosages (WRDA 82)

N 8:20 am: Paving outside shoulder of NB River Rd. with

100% gravel CA mix (611# cement).

N 10:00 am: Began placing 30% RCA mixture at STA

654+00, outside shoulder of NB River Rd. Pavement

stamped ‘‘1 30’’ to indicate sublot 1 with 30% RCA.

Three concrete loads brought paving up to the
beginning of the curve at the intersection of NB South
River Rd and US 231. Concrete samples tested by E &
B Paving, Inc.:

# Air 5 5.2%

# Slump 5 1.5 in

Finishers commented that the RCA mixture closed
well and finished nicely, better than the 100% gravel
mixture. Edge looked very good, clean and sharp as
shown in Figure 8.2.

N 10:20 am: Pause in paving—adjusting air back at plant.

N 10:40 am: Trucks 4 and 5 arrive and begin placing at the

curve. Concrete tested by E & B:

Figure 8.1 Paving section map of US 231.
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# Air 5 5.6%

# Slump 5 1.25 in

The mixture that sat for approximately 20 minutes
was a bit dry and stiff by the time additional concrete
arrived and was placed. There were some challenges in
placing and finishing this mixture both because it was
drier and was being placed on the curve where the
pavement widens. Finishers worked with it until it was
smooth. They used a small amount of water sprinkled
on the surface as a finishing aid, when necessary.

N 11:00 am: Heading SB along outside shoulder of US 231

past the curve. STA 280+00 is the first STA marking on
US231 after curve/intersection. The trucks delivered

concrete at regular intervals and slip form paver moved
along at a steady pace. Continuous progress of paving
was being made with no more than a 5 minute pause
between trucks. Concrete surface continues to close easily
and finishes well. Edge continues to stay sharp and clean.

N 11:10 am: Concrete sampled and tested by E & B:

# Slump 5 2 in

# Air 5 7.1%

N 11:34 am: Concrete sampled and tested by E & B and
INDOT:

# Slump 5 2 in

# Air 5 6.8% (E & B)

# Air 5 6.3% (INDOT)

# Beams made

N 1:00 pm: Nearing the end of 30% RCA test section. STA
274+00 plus one panel was the end of the 30% RCA test
section and was stamped R-30 (Figure 8.3).

Placement of Concrete Shoulder Containing 50% RCA

Weather continued to be sunny with temperatures in
the mid-70s.

N 1:40 pm: Paving the 50% RCA mixture begins at a header
(2 panels N of STA 3+00) along outside shoulder of NB
ramp from US 231 to River Rd. Paving moves south-
ward. Concrete from truck #3 sampled and tested:

# Slump 5 2 in

# Air 5 5.9%

N 2:17 pm: Construction operation is steady. Mixture
finishes well, closes nicely and edge is sharp and clean.

Figure 8.3 (a) US 231 shoulder paved with 30% coarse RCA (looking north), (b) finished surface of shoulder paved with 30%

RCA stamped R-30.

Figure 8.2 US 231 shoulder paved with 30% coarse RCA.
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Surface tined and curing compound applied generally
30–45 min after concrete is placed.

N 2:30 pm: Occasional 10–12 min lag between trucks.
N 2:40 pm: Concrete sample tested at STA 279+20:

# Slump 5 2 in
# Air 5 6.7% (E & B)
# Air 5 6.3% (INDOT)

N 3:30–4:00 pm: Paving 50% RCA ended at STA 277+50.
R-50 is stamped into pavement (as seen in Figure 8.4).
Paving the shoulder continues with 100% gravel CA.
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A.1. INTRODUCTION

A.1.1. Background

The construction sector grows as human needs grow requiring
large quantities of material for building new, and repairing and
modifying existing buildings, highways, bridges, housing, public
facilities and other infrastructures. Many materials used in
construction require large amounts of aggregate including
concrete which is comprised of approximately 70% to 80%
aggregate. The aggregate has considerable influence on several
concrete properties including strength, shrinkage, creep, and
durability (24).

Problems may develop if construction is restricted due to
depletion of existing sources, reduced availability of new sources,
restrictions on developing new sources and the increased cost in
mining and transportation. Using recycled aggregate (RA) may
help to address some of these problems (2). Interest in portland
cement concrete (PCC) made with recycled concrete aggregate
(RCA) has increased steadily since the mid-1970’s with widespread
use of recycled aggregate concrete (RAC) in pavements and many
other construction application beginning in the 1980’s (5). Based
on Federal Highway Administration’s data 41 states allow RAC
to be used in pavement and other applications (as shown in
Figure A.1.1). Primarily, RCA has been used as base and subbase
materials, in concrete and asphalt paving layers, as rip-rap, as
general fill and embankment (2). However, there are several
examples in the literature of RCA as aggregate in concrete
pavements (25).

A.1.2. A Brief History of the Use of RCA in
Concrete Pavement

The use of crushed concrete as a source of aggregate for new
concrete in pavement construction is not new. One of the earliest
documented uses of recycled concrete in pavement construction in
the U.S. took place in Illinois more than 60 years ago when two
RCA concrete paving lanes were added to a portion of U.S. 66
(25). Many European countries utilized post-World War II
building rubble in new concrete pavement construction at about
the same time (27).

After those early recycling efforts, little work was done in the
U.S. in the area of concrete recycling until the mid-1970s, when
interest and activity surged during a period of ‘‘environmental
awakening.’’ By the mid-1990s, nearly 100 U.S. highway paving
projects had been constructed using RCA in the concrete for

pavements, including several that included RCA obtained from
pavements exhibiting D-cracking and alkali-silica reaction (ASR)
damage (25). A list of many of these projects is presented by
Snyder et al. (25).

Most of these concrete pavements performed very well, but
some performed so poorly as to be cautionary and, as a result,
many states stopped using crushed concrete as aggregate in
concrete for pavements. The following are examples of the
problems that were observed on some RCA concrete pavements
constructed in the 1970s and 1980s (and their apparent causes)
(29):

N Deterioration and faulting of mid-panel cracks on jointed
reinforced concrete pavements (JRCP) (indicating the need
to design panel size and reinforcement in consideration of
the potentially higher shrinkage and thermal coefficient of
RCA concrete)

N Poor joint load transfer efficiency and development of
excessive joint faulting on un-doweled pavements (due to
lack of dowel bars and reduced aggregate interlock
capability of crushed concrete particles, especially when the
top size is reduced)

N Delayed development of recurrent D-cracking (associated
with the use of crushed concrete containing aggregate that is
highly susceptible to freeze-thaw damage in a structure that
allows critical saturation to develop in freezing environment)

Other project reports from that era noted mixture workability
problems (and suggested the use of natural sand and admixtures),
and the observation of lower material strengths when RCA was
substituted for natural aggregate without other mixture design
modifications (27). These problems and findings illustrate the
importance of considering the physical and mechanical properties
of RCA in both the concrete mix design and the concrete
pavement structural design.

Many field and laboratory investigations of RCA concrete
have been performed in recent years, and much has been learned
regarding its properties and characteristics. Highlights of these
findings are presented in later sections of this review, and they
have been used to improve concrete pavement design using RCA
in Europe and Japan to the point where concrete recycling into
concrete pavement structures is now standard practice in these
parts of the world. For example, Austria recycles 100 percent of
existing concrete pavement into the new pavement structure, using
coarse RCA in the lower lift of two-lift concrete pavements while
using the fines to stabilize the foundation layer.

In the U.S. today, nearly 100 percent of recovered concrete
pavement is recycled, although generally it is not used in concrete
pavement and is more often related to foundation layer, backfill
and other applications (2). This probably is due to the ready
availability of relatively inexpensive natural aggregate in many
areas of the country, along with reluctance to accept the risk that
is associated with lack of current experience in using RCA in
concrete mixtures. A few states routinely are using (or allowing)
the use of RCA in concrete paving mixtures. The most notable of
these is Texas, which allows the practice and even reconstructed a
major interstate highway using 100 percent recycled concrete (and
no natural aggregate) in the late 1990s (30).

A.2. BENEFITS OF USING RECYCLED
AGGREGATE

Using RCA instead of natural aggregate (NA) has a positive
environmental impact. It can conserve on natural aggregate
thereby reducing the need to open new mining areas and
preserving the environment (2). In the past, construction waste
usually ended up in the landfill. By crushing and reusing it as
aggregates the amount of waste going into landfills is reduced (2).

The production and use of virgin aggregate consumes a great
deal of energy (as motor fuel and/or electrical power) at each step
of processing, including: the mining or extraction of the aggregate;
the crushing, screening and washing; the stockpiling and/or
transport to the job site; and the removal and disposal of material

Figure A.1.1 States that allow the use of recycled concrete
aggregate (RCA) in pavement and other applications (2).
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that is not recycled at the end of its period of use. Concrete
recycling can greatly reduce the need for mining or extraction, and
can reduce haul distances and fuel consumption associated with
both supply and disposal (2).

Research by University of New Hampshire has shown that
RCA has great value in reducing CO2 which is a primary
‘‘greenhouse gas,’’ through the mechanism known as sequestering
carbon, or of spontaneous carbonation, in which atmospheric
CO2 reacts with calcium hydroxide (Ca(OH)2), a by-product of
the cement hydration in the concrete mortar to produce calcium
carbonate. (i.e., the carbonation reaction is Ca(OH)2 + CO2 R
CaCO3 + H2O) (31).

Using RCA may reduce the construction costs. Some states
estimated savings of up to 60% by using recycled aggregates as a
replacement of natural aggregates (2). Using RCA has a good
performance record in pavements. Several states have built
concrete pavements using RCA and many of these pavements
have shown good performance. One of the first U.S. applications
of RCA in pavement construction occurred in the 1940’s on U.S.
Route 66 (26).

There are additional inducements for using RCA in new
concrete. Recycling of concrete to produce RCA is a relatively
simple process that involves breaking, removing and crushing
hardened concrete from an acceptable source using standard
aggregate-processing equipment (2). Because concrete aggregate
has a higher value then aggregate used for base or fill RCA in new
concrete is considered to have a higher life-cycle cost value then
when used in other applications.

A.3. CHARACTERISTIC OF RECYCLED
CONCRETE AGGREGATE

Recycled concrete aggregate (RCA) is produced by crushing
and sorting existing concrete to be used as aggregates in new
concrete. Some of the properties of RCA may differ from those of
natural aggregates (NA). Since aggregate properties influence
many of the plastic and hardened properties of concrete any
differences in aggregate properties may result in different proper-
ties in concrete made from RCA compared to a similar mixture
made from NA.

A.3.1. Mortar Content

During the production of RCA some of the old mortar falls
away but much of the old original mortar inherently clings to the
original aggregate and becomes part of the RCA product. This old
mortar creates a more porous system in the RCA and is the
primary factor for an increased absorption capacity and decreased
specific gravity commonly associated with RCA compared to
most NA (2). This higher absorption can lead to higher plastic
shrinkage on RAC (12, 32). A higher mortar content in recycled
aggregate also may contribute to a reduction in strength (2) and
higher cracking rate in RAC pavement (33). The presence of old
mortar attached to RCA creates greater areas of aggregate-paste
interfaces in RAC which is also known as the interfacial transition
zone (ITZ). ITZ is known as weak area in concrete where potential
failure might occur. RAC has more ITZ than normal concrete
because the ITZ in RAC includes the bonds between aggregate-
old mortar, aggregate-new mortar, and old mortar-new mortar
(25).

A.3.2. Specific Gravity

Many researchers report lower specific gravity for recycled
aggregate than that of natural aggregate (as shown in
Table A.3.1). As stated above, it is the presence of old mortar
attached to the RCA that can lead to a lower specific gravity than
what is common for natural aggregate typically used in concrete
pavements (2).

A.3.3. Absorption

Most of studies have shown that RCA generally has higher
absorptions than NA typically used in concrete pavements due to
the somewhat porous old mortar attached (12,32). Some of these
reported values are shown in Table A.3.2.

A.3.4. Influence of Crushing Process and Other Factors
on RCA Properties

Most concrete recycling plants have both primary and secondary
crushers. The primary crusher typically reduces the material size
down to about 3-4 in [8–10 cm], while the secondary crusher further
breaks the material to the desired maximum coarse aggregate size.

The three main types of crushers used in concrete recycling
feature ‘‘jaw,’’ ‘‘cone’’ and ‘‘impact’’ designs, which differ in how
they crush the concrete. Different crushing processes remove
different amounts of mortar from the original aggregate particles,
and they produce different RCA product particle size distribu-
tions. Figure A.3.1 presents data from an FHWA-sponsored
study that shows the particle size distributions produced when
samples of the same concrete were crushed using three different
processes. The degree of mortar removal and resulting particle size
distribution also vary with the properties of the natural aggregate
in the concrete that is being crushed.

Since mortar removal and particle size distribution vary with
crushing process and source concrete properties, key properties of
the RCA product also vary with these same parameters. In
general, as particle size decreases, larger portions of the particles
tend to comprise reclaimed mortar; as a result of the increased
mortar content, particle absorption will increase and relative
density (specific gravity) will decrease. This is illustrated in
Table A.3.3.

TABLE A.3.1
Specific gravity of recycled aggregate and natural aggregate
reported by different researchers

Author

Specific gravity (coarse

aggregate)

Recycled

aggregate

Natural

aggregate

ACPA 2009 (2) 2.1–2.4 2.4–2.9

Gomez-Soberon 2002 (8) (surface dry) 2.35–2.42 2.59–67

Gomez-Soberon 2002 (8) (dry) 2.17–2.28 2.57–2.64

Poon et al. 2004 (9) 2.33–2.37 2.62

Ann et al. 2008 (12) 2.48 2.63

Xiao et al. 2005 (11) 2.52 2.82

Abbas et al. 2009 (SSD) (34) 2.42–2.5 2.71–2.74

Kou et al. 2007 (7) 2.49–2.57 2.62

Olorunsogo et al. 2002 (32) 2.6 2.61

TABLE A.3.2
Absorption of recycled aggregate (RA) and natural aggregate
(NA) reported by different researchers

Author

Absorption (%)

Recycled

aggregate (RA)

Natural

aggregate (NA)

ACPA 2009 (2) 3.7–8.7 0.8–3.7

Gomez-Soberon 2002 (8) 5.83–8.16 0.88–1.49

Poon et al. 2004 (9) 6.28–7.56 1.24–1.25

Ann et al. 2008 (12) 4.25 0.73

Xiao et al. 2005 (11) 9.25 0.4

Abbas et al. 2009 (SSD) (34) 3.3–5.4 0.54–0.89

Kou et al. 2007 (7) 3.52–4.26 1.11–1.12
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Since coarse RCA is most highly valued for use in concrete
mixtures, it is often desirable to produce as much of this size fraction
as possible. The yield of coarse aggregate from the recycling operation
depends on many factors, including the type and quantity of natural
coarse aggregate used in the source concrete, the quality and hardness
of the concrete mortar, the breaking and removal operations and the
crushing processes used. Loss of material through removal operations
can be as high as 10 percent (for recycling of jointed reinforced
concrete pavement with field removal of the wire mesh) and may
approach zero for jointed plain concrete pavements. Crushing for
larger top-size aggregate generally produces higher coarse aggregate
yields because less crushing is necessary. For example, 55 to 60
percent coarse aggregate yield is common when crushing to L in. [19
mm] top size, while 80 percent yield is not uncommon when crushing
to 1.5 in. [28 mm] top size (35). Table A.3.4 summarizes reclamation
efficiencies observed in an FHWA-sponsored study of various
source concrete materials and crushing processes.

A.4. CHARACTERISITCS OF CONCRETE MADE
WITH RCA

Aggregate characteristics affect the properties of the plastic and
hardened concrete in which it is used. Therefore, if there are
differences in aggregate properties of RCA compared to a NA this
could lead to differences between the concrete containing RCA
compared to concrete made with NA (36). This section explores
these potential differences in concrete made with RCA in both the
plastic and hardened state, and how other researchers may have
managed these differences.

A.4.1. Fresh Concrete Properties

A.4.1.1. Workability

Workability of concrete is affected by several factors including
but not limited to water content, aggregate type, aggregate size,

shape and gradation, mixture proportion and temperature at
mixing (6). The workability of concrete is often estimated using
the slump test in accordance to ASTM C 143. Generally, a high
slump suggests the concrete is more workable and a lower slump is
a stiffer mix. Some researchers have reported that RAC may have
less slump than normal concrete at the same w/c ratio (5,6). The
decrease in workability of RAC may be attributed to the
angularity of RCA, rough surface texture, and/or higher absorp-
tion capacity of recycled aggregate (6). To achieve similar
workability as a mixture using natural aggregate (NA), the
concrete made with coarse RCA may need 5% more water than
normal concrete (NC) while concrete with both coarse and fine
RCA may need approximately 15% more water (6). Results of
workability from several researches are shown in Table A.4.1.

The use of admixtures may be the solution to achieving similar
workability between RAC and normal concrete when the same w/
c ratio is required (5).

A.4.1.2. Air Content

The air content of fresh concrete containing RCA is usually up
to 0.6% higher than that of normal fresh concrete (2). The higher
air content generally is assumed to be caused by the air that is
entrained and entrapped in the reclaimed concrete mortar
attached to the RCA (29).

Because RCA tends to be more porous, the air content
measurement by the volumetric method (ASTM C 173) is
recommended. However, the pressure method (ASTM C 231)
can be used to measure the air content if a correction factor is used
as when used on lightweight aggregate (33). Katz 2003 (37) used
the gravimetric method (ASTM C 138) in measuring the air
content of RAC and the result showed 4-5.5% higher air content
on RAC.

A.4.2. Hardened Concrete Properties

A.4.2.1. Compressive Strength

Most studies have reported a decrease in compressive strength
when using of RCA in concrete (6–11,37). The decreasing trend of
compressive strength and tensile strength in concrete with
increased RCA content may be explained by the presence of two
kinds of interfacial transition zones (ITZ) in concrete made with

Figure A.3.1 Variation in particle size distribution for a
single concrete source crushed in three different plants.

TABLE A.3.3
Effects of particle size on RCA properties (2)

Sieve size

Percent

retained

Bulk specific

gravity

Percent

absorption

1.0 in. (25 mm) 2 2.52 2.54

L in. (19 mm) 22 2.36 3.98

K in. (12.5 mm) 33 2.34 4.50

G in. (9.5 mm) 18 2.29 5.34

No. 4 (4.75 mm) 25 2.23 6.50

Weighted average 100 2.31 5.00

TABLE A.3.4
Effects of source concrete aggregate type and crushing process on
coarse aggregate reclamation efficiency (percent)

Source concrete aggregate type

Crushing process Limestone Gravel Granite

Jaw-Jaw-Roller 71 73 87

Jaw-Cone 73 80 76

Impact-Impact 44 63 53

TABLE A.4.1
Reported workability of RAC compared to normal concrete

Author Workability

Smith and Tighe 2008 (5) Lower

ACPA 2009 (2), after FHWA 2007 (28),

ACI 2001 (36)

Similar to slightly lower

Sturtevant et al. 2007 (33) Lower

Liu and Chen 2008 (4) Lower

Topcu et al. 2004 (38) Lower
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RCA. The ITZ represents the bond between aggregate and paste
and is often weaker than either the aggregate or hydrated cement
paste (2). In normal concrete, the ITZ occurs between aggregate
and mortar while in concrete with RCA, the ITZ occurs between
the original aggregate and old mortar and the reclaimed mortar
and new mortar. The higher the percentage of RCA replacement
there is in the concrete then theoretically the greater the potential
reduction is in strength, as shown in Figure A.4.1. Table A.4.2.
shows that concrete made with 100% recycled coarse aggregates
has up to 25% lower compression strength than conventional
concrete at 28 days (assuming the same w/c and cement quantity),
although a few authors reported very little change or an increase
in strength. Angulo et al. (39) related the reduction of compressive
strength to an increase in porosity of recycled aggregates produced
from a mix of concrete and masonry.

A.4.2.2 Flexural and Tensile Strength

A study by Katz (37) showed that flexural strength of RAC
that contained 100% recycled coarse aggregate decreased approxi-
mately 10% compared to similar NC. Poon et al. (9) concluded
that the decrease of flexural strength in RAC was noticeable
especially when the concrete was made from saturated recycled
aggregate.

The study by Katz (37) also showed that tensile strength of
RAC has decreased around 6% than its reference. Other studies
showed that reduction of tensile strength on RAC is up to 10%
when the RCA replaces the coarse aggregate only however, when
the aggregate replacement includes both coarse and fine RCA the
tensile strength reduction increased to 10%–20% (2). Contrary to
this, another study by Etxeberria et al. (10) showed higher tensile
strength for RAC than normal concrete. The correlation between
tensile strength and percentage replacement of RCA results from
several studies by are shown in graph in Figure A.4.2.

A.4.2.3. Modulus of Elasticity

The term modulus of elasticity used herein refers to the static
modulus of elasticity and is affected by the presence of reclaimed
mortar in RAC. As shown in Figure A.4.3., most studies have
shown that RAC had a lower modulus of elasticity than normal
concrete (0% RCA), and the modulus of elasticity decreased as the
percentage recycled aggregate increased (7,10,11,25). A study by
Snyder et al. (25) showed that the modulus of elasticity of RAC
range from 20-40% lower than that of normal concrete. ACPA (2)
also noted that modulus elasticity of RAC with coarse aggregate
replacement was 10-33% less than the modulus of elasticity of
normal concrete (36). Angulo et al. (39) related the reduction of

modulus to an increase in porosity of recycled aggregates
produced from a mix of concrete and masonry.

A.4.2.4 Coefficient of Thermal Expansion (CTE)

Sturtevant et al. (33) noted that the coefficient of thermal
expansion (CTE) was generally higher for pavement with recycled
concrete than the control pavement. High CTE may increase the
potential for mid-slab cracking and increase the rate of crack
deterioration due to higher stresses and/or greater crack widths.
Cores retrieved and tested from several test sites from around U.S.
indicated that the CTE is approximately 10% higher on RAC
compared with that of normal concrete, with a range of values up
to approximately 30% higher (29).

A.4.2.5. Freezing-thawing Resistance

Smith et al. (5) showed that there was no significant difference
in freeze-thaw resistance between RAC and normal concrete.
Another study by Gokce et al. (40) resulted in poor resistance of
RAC with coarse aggregate derived from non-air-entrained
concrete. RAC made with recycled coarse aggregates that
originated from air-entrained concretes was highly frost resistant
and showed freeze-thaw resistance that was superior to that of
normal concrete after subjected in 500 freezing and thawing cycles
(40). However, Zaharieva et al. (41) showed that RAC had lower
resistance to freezing and thawing than normal concrete due to the
higher porosity and poorer mechanical characteristics of RAC
(42).

A.4.2.6. Drying Shrinkage

The extent to which drying shrinkage occurs is a function of
paste content and w/c ratio. Since RAC generally contains a
higher paste content due to its reclaimed and new mortar, RAC
tends to have the potential for higher drying shrinkage. Studies
have found 20% to 50% higher shrinkage in concrete containing
coarse RA and natural sand, and 70% to 100% higher shrinkage
in concrete containing both coarse and fine RA compared to NC
(36). Tam et al. (13) reported that shrinkage increased along with
the increased percentage of recycled coarse aggregate in the
concrete with nearly 100% increased shrinkage in RAC that
contained 100% coarse RCA. Other studies reported similar
trends in RAC that generally had higher drying shrinkage than
normal concrete (3,4,5,37). Incorporating both recycled coarse
aggregate and recycled fine aggregate showed the highest
shrinkage in all ages of specimens (4). Vancura et al. (43) noted

Figure A.4.1 Compressive strength variability with respect to percent replacement of recycled aggregate in RAC reported by
several researchers.
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that in a study by Yang et al. (44) the amount of reclaimed mortar
attached to the RCA greatly affected the shrinkage of RAC.

A.4.2.7. Creep

The percentage replacement of recycled aggregate affects the
creep of the RAC. Creep on RAC generally increased with

increased amounts of recycled aggregate in RAC (13). ACPA (2)
reported the creep of RAC typically 30 to 60 percent higher than
that of normal concrete and it was due to the higher proportion of
paste content in RAC.

A.4.2.8. Permeability

Size and continuity of the pores at any point during the
hydration process in hydrated cement paste would control the
coefficient of permeability. Permeability in RAC increased with
the increase in the proportion of RCA. The increase of
permeability generally leads to the decrease of chloride ion
penetration resistance. Kou et al. (7) reported that RAC with
100% replacement of coarse RCA resulted in more than 40%
decrease in chloride ion penetration resistance (test has been
conducted based on ASTM C 1202 Rapid Chloride Permeability
Test).

A.4.2.9. Density

The density of RAC tends to be less than NC due to its
attached mortar which is more porous and creates a less dense
matrix in the concrete (2). Several studies (8,10,11) showed that
generally the increase of RA content in RAC contributes to the
decrease of density of RAC (Figure A.4.4).

TABLE A.4.2
Compressive strength of RAC compared to normal concrete reported by different researchers

Author Compressive strength

% Replacement of recycled

coarse aggregate

Etxeberria et al. 2007 (10) 20-25% lower 100

Roesler et al. 2009 (6) 2-10% lower 100

Xiao et al. 2005 (11) ,11% lower 100

Tam et al. 2007 (13) ,10% lower 100

ACPA 2009 (2) after FHWA 2007 (28), ACI 2001 (36), Hansen 1986 (45) 0-24% lower —

Katz 2003 (37) ,25% lower 100

Rahal 2007 (46) ,10% lower —

Smith 2009 (47) Increase 15; 30 and 50

Sagoe-Crentsil et al. 2001 (48) after Frondistou-Yannas et al. 1980 (49),

Ravindrarajah et al. 1987 (50)

10% lower —

Sturtevant et al. 2007 (33) Increase, except Minnesota 4 project —

Figure A.4.2 Variation of tensile strength respect to percent
replacement of recycled aggregate in RAC reported by several
researchers.

Figure A.4.3 Variation of modulus of elasticity with respect
to percent replacement of recycled aggregate in RAC reported
by several researchers.

Figure A.4.4 Variation of density of concrete respect to
percent replacement of recycled aggregate in RAC reported by
several researchers.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/18 31



A.5. CHALLENGES AND SUCCESS IN
USING RCA

As discussed in the previous chapters the properties of RCA
may differ from NA and so may the concrete made with each of
these aggregate types. Generally RAC may have a tendency for
lower strength (compressive, flexural, and tensile strength); higher
shrinkage, creep, CTE and permeability; lower modulus of
elasticity and density. Generally these differences lead to quality
concerns of RAC compared with NC using the same mix design.
Only two papers (out of 10) reported the use of fine RCA in their
research project. Why recycled fine aggregate is rarely used and
the challenge its use presents is discussed in Section A.5.4.

A.5.1. RCA Derived from D-cracked and ASR-damaged
Concrete Pavements

RAC made from D-cracked pavement showed no significant
difference in terms of freeze-thaw resistance when the aggregate
size is limited to 19 mm since it larger aggregate particles
susceptible to D-cracking expand the more during freeze-thaw
cycles (2). Other methods used to reduce the freeze-thaw effect in
RAC included reducing the paste permeability by using fly ash as
supplementary cementitious material (SCM) or reducing w/c ratio,
and/or reduce the exposure to water and saturation by using joint
seals and pavement drainage system in RAC pavement (2).

ASR occurs when aggregates containing reactive silicates react
with alkalis and hydroxyl ions in the cement to form a highly
expansive gel. The expansive forces often cause the aggregate and
the surrounding mortar to crack and deteriorate (2). The
reclaimed mortar in RCA is inherently non-reactive, so the
concentration of reactive silicates in RCA is generally reduced
from the original concrete. Therefore concrete with processed
RCA from an ASR-damaged concrete may tend to be less
susceptible to ASR than those containing conventional silicate
aggregates (2). Other researchers suggest that ASR related to
RCA could be activated or reactivated if the original aggregate
was potentially reactive and the alkali loading was high enough in
the new concrete (51). RAC from ASR-damaged concrete has
shown little evidence of recurrent ASR damage if precautionary
measures are taken such using a low-alkali cement, Class F fly ash,
slag cement and/or low w/c ratio (2).

A.5.2. Percentage Replacement of Recycled Aggregate
in RAC

The percentage replacement of recycled aggregate varied
among researchers and as did the inclusion of RCA fine
aggregates, therefore there are difficulties in comparing reported
results. From the literature, the percentages of coarse and fine
RCA replacement used in ten studies from different authors are
detailed in Table A.5.1.

As Table A.5.1 shows 9 out of 10 projects went up to 100%
replacement of recycled coarse aggregate, and 8 out of 10
contained one or more replacement levels between 0% and
100% replacement with 6 out of 10 papers that contained a 50%
replacement mix. Certain levels of replacement in RCA have been
reported for its comparable quality in many properties with
control concrete (0% RCA). A 20% coarse RCA replacement had
no significant effect in concrete properties (13) while other studies
showed that there is no significant impact in compressive strength
and freezing- thawing resistance up to 30% level of coarse
aggregate replacement (5).

A.5.3. Potential Ways to Improve the Performance
of RAC

A.5.3.1. Using Fly Ash

It is commonly known that the RCA are more porous and
contributes to a more permeable concrete (2). Permeability plays
an important role in the durability of the concrete (32). The more
permeable the concrete, the easier it is for water and/or other
liquids that contain chemical substances to be penetrated which
may make it less durable and contribute to damage in the concrete.
The use of pozzolanic materials reduces the permeability which
generally leads to more durable concrete. Fly ash (FA) and silica
fume are widely used pozzolanic materials in concrete. Fly ash is
more likely used in pavement than silica fume because it is less
expensive and has fewer related workability and curing concerns.

The positive effects of using fly ash:

N FA increases the workability of concrete (52).
N FA reduces the permeability of concrete. FA increases the

production of C-S-H in the concrete system which makes
the concrete denser. The less permeability the concrete, the
better resistance to chloride ion penetration (7).

N A recent study by Rudy (1) concluded that optimum fly ash
concrete paving mixture should contain 22% of fly ash (by
weight of total cementitious material) and current INDOT
specifications allow up to 24% replacement (by total weight
of cementitious material).

There are properties of fly ash that may need to be considered.
Fly ash may delay the setting time of concrete. Unlike cement
which reacts quickly with water, fly ash needs time before it reacts
since it reacts with the product of water-cement reaction (CH) and
water to produce C-S-H (52).

From Figure A.5.1, we can see that the higher percentage
replacement of RCA the higher the amount of ions passed thru the
concrete. It indicates the higher porosity of concrete with higher
replacement of RCA. The porosity of the concrete became less
over time due to the more complete hydration process but the
relative difference in porosity between mixes remained the same.

TABLE A.5.1
Percentage replacement of RCA in the concrete mix design in different studies

No. Author

Percentage replacement (by weight)

Recycled coarse aggregate (RCA) Recycled fine aggregate (RFA)

1 Smith et al. 2008 (5) 0%, 15%, 30%, 50% 0%

2 Xiao et al. 2005 (11) 0%, 30%, 50%, 70%, 100% 0%

3 Tam et al. 2007 (13) 0%, 20%, 100% 0%

4 Kou et al. 2007 (7) 0%, 20%, 50%, 100% 0%

5 Olorunsogo et al. 2007 (32) 0%, 50%, 100% 0%

6 Poon et al, 2004 (9) 0%, 20%, 50%, 100% 0%

7 Etxeberria et al. 2007 (10) 0%, 25%, 50%, 100% 0%

8 Sturtevant et al. 2007 (33) 0%, 100% 0%, 20%, 22%, 25%

9 Liu and Chen 2008 (4) 0%, 100% 0%, 100%

10 Gomez-Soberon 2002 (8) 0%, 15%, 30%, 60%, 100% 0%
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A.5.3.2. Two-Stage Mixing Approach (TSMA)

A two-stage mixing approach (TSMA) has been developed by
Tam et al. (13) to improve concrete quality using RCA, as shown
in Figure A.5.2. During the first stage of mixing a layer of cement
slurry forms on the surface of recycled aggregate that fills the
cracks and voids and eventually creates a better ITZ. Improved
strength by TSMA has been proven by Tam et al. (13) while the
durability performance remains to be studied (13). The drawback
to this procedure is the mixing time needed which is longer than
normal mixing times (270 seconds Vs. 120 seconds).

A.5.3.3. Reducing the Mortar Content on RCA

Reducing the mortar content attached to the original
aggregates in RCA has been shown to improve the quality of
the final product (2). Reducing mortar content can be done by
reducing the RCA to a smaller size than its original aggregate size
during the production (e.g., waste concrete with a maximum
aggregate size of 1 in is crushed into RCA with maximum

aggregate size L in). As discussed in Section A.3.4 crushing and
processing techniques also can influence the mortar content.

A.5.3.4 Adjustment to Mix Design Proportions

Some studies have shown that an adjustment to the mix design
proportions also can compensate for the change in properties
when using RCA in concrete. To offset the reduction in strength in
concrete with RA, cement can be added. For example, concrete
with 50% RCA replacement needs approximately 6% more
cement than its control concrete to achieve comparable compres-
sive strength while concrete with 100% RCA may need 8.3% more
cement (10). Also Etxeberria et al. (10) has shown that different
proportions of cement, aggregate and superplasticizer may be
needed for RAC compared to normal concrete in order to achieve
comparable strengths. Table A.5.2. and Table A.5.3. show the
mix design and the concrete properties respectively examined by
Etxeberria et al. (10).

The basic proportioning of RAC can be accomplished using
the same procedures for proportioning normal concrete. The

Figure A.5.2 Mixing procedures of the (i) normal mixing approach and (ii) two-stage mixing approach (13).

Figure A.5.1 Chloride ion penetration in concrete made with various amounts of RCA and fly ash replacements (7).
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procedure of proportioning the mix design of RAC generally can
be adopted from ACI 555R-01 (2), with the following exceptions:

N The lower specific gravity of RCA should be considered in
determining the aggregate batch weights on the basis of
absolute volumes of components.

N In order to achieve the same slump as for normal concrete,
the free water content of a mixture containing coarse RCA
should be increased about 5 percent. Additional water can be
reduced or even be eliminated through optimized gradations,
or the use of chemical and/or mineral admixtures (e.g., fly
ash, water reducers, superplasticizer).

N The ratio of fine aggregate to coarse aggregate should be
approximately the same as for the control concrete.

A.5.3.5. Additional Mix Design Modifications

Well-rounded, compact aggregate particles with a smooth
surface texture are most effective in promoting concrete work-
ability, but RCA particles tend to be angular and rough-textured,
which can increase the harshness of fresh concrete mixtures—
especially when recycled concrete fine aggregate replaces conven-
tional sands.

To produce the same workability as a conventional concrete
mixture, up to 5 percent more water may be required for mixtures
containing only coarse RCA ((2) after (53)) and up to 15 percent
more water is needed for mixtures containing both coarse and fine
RCA ((2) after (54)). The use of additional water while holding
other mix design parameters approximately constant increases the
water-cementitious materials ratio, resulting in corresponding
decreases in strength. For this reason, it is most common to limit
the use of fine RCA to less than 30 percent of total fine aggregate,
and/or to use chemical admixtures (water reducers and super-
plasticizers) and/or fly ash to offset any lost workability (2).

As noted previously, RCA concrete strength generally varies
directly with the strength of the source concrete and varies
inversely with the reclaimed mortar content (both coarse and fine
RCA) and water-to-cement ratio for the new concrete mixture (2).
Strength reductions due to the use of RCA in concrete mixtures can
be offset (or eliminated) by modifying the concrete mixture design
to reduce the water-cementitious materials ratio (often in
combination with the use of water-reducing admixtures) and/or
the use of mineral admixtures such as fly ash or slag cement. Blends

of natural and recycled fines (up to about 30 percent replacement)
have also been associated with higher strengths than can be
obtained from using either natural or recycled materials alone. This
increase in strength has been attributed to improvements in the
gradation of the blended fine aggregate, particularly over the No.
30 and No. 60 [600- and 300-mm] sieves, where RCA fines tend to
be deficient (55). The effects of mix design modifications on
concrete strength are illustrated in Table A.5.4, which presents
data from and FHWA-sponsored study of field test sites (56).

A.5.4. Considerations for Using Fine RCA in
Concrete Mixtures

The use of fine RCA in concrete mixtures has generally been
associated with mixture workability problems, reductions in
concrete strength and elastic modulus, and significant increases
in volumetric instability (i.e., shrinkage, creep and coefficient of
thermal expansion). These behaviors can be attributed to the high
mortar content that is generally present in RCA fines, as well as to
the angularity, rough surface texture and high absorptivity of the
particles.

The study by Etxeberria et al. (10) avoided using fine RCA
(100% passing 3/8-in sieve) due to its high absorption that may
have led to higher drying shrinkage. Smith and Tighe (5) observed
that RFA contained many impurities and its use resulted in
strength loss in the concrete. Zaharieva et al. (41) noted that the
use of fine recycled aggregate is rarely allowed because it is the
main cause of RAC problems, and avoiding the use of fine RCA
can reduce the challenges of using RCA in concrete.

Most of the challenges related to RAC can be mitigated or
completely offset through:

TABLE A.5.2
Definitive dosage for control concretes (CC), 25% recycled aggregate concrete (RC25), 50% recycled aggregate concrete (RC50) and
100% recycled aggregate concrete (RC100) (10)

S A1 RA1 A2 RA2 A3 RA3 Cement Additive % W Effective w/c

CC 765.1 332.7 295.1 579.2 300 0.97 165 0.55

RC25 765.1 249.5 72.8 221.3 64.6 434.4 128.3 300 0.79 165 0.55

RC50 739 172.1 150.6 147.4 129.2 289.4 256.6 318 0.84 165 0.52

RC100 683.2 425.8 306.4 391.2 325 1.38 162 0.5

CC: control concrete. RC25, RC50 and RC100: concrete with 25%, 50% and 100% recycled coarse aggregates respectively.

S sand: A1, A2 and A3: natural coarse aggregate 4/10 mm, 10/16 mm and 16/25 mm, respectively. RA1, RA2 and RA3: Recycled coarse

aggregate 4/10 mm, 10/16 mm and 16/25 mm, respectively. W: water.

Aggregates, cement and water are given in mass (kg) for 1 m3 of concrete.

TABLE A.5.3
Mechanical properties of cubic test elements at 28 days of curing (10)

Density (kg/dm3) Compressive strength (MPa) Tensile strength (MPa) Modulus of elasticity (MPa)

CC 2.42 29 2.49 32,561.7

RC25 2.40 28 2.97 31,300.4

RC50 2.39 29 2.70 28,591.7

RC100 2.34 28 2.72 27,764.0

TABLE A.5.4
Effect of mixture design modifications on RCA concrete strength

CT KS WY

RCA Nat RCA Nat RCA Nat

w/(c+p) 0.40 0.45 0.41 0.41 0.38 0.44

%Fine RCA 0 0 25 0 22 0

f’c (MPa) 39.2 35.4 47.9 43.7 48.7 44.7
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N mix design modifications (as described previously) especially
reductions in water-cementitious material ratios and the use
of chemical and mineral admixtures,

N structural design modifications (e.g., reductions in panel
length and/or width to compensate for increased curl/warp
stresses, increased reinforcement quantities, increased thick-
ness, improved support, etc.), and

N restrictions on fine RCA content (typically to 30 percent or
less replacement of natural fine aggregate) (2).

The ability to offset these behaviors was demonstrated with the
100 percent replacement of natural aggregate by RCA (both coarse
and fine) on a major US highway in 1995, when the Texas DOT
(TxDOT) successfully replaced a distressed portion of Interstate 10
near Houston with continuously reinforced concrete pavement
(CRCP) using all recycled aggregate in the concrete mixture.
TxDOT required that the RCA meet the same specification
requirements as natural aggregate intended for use in concrete
pavement construction. The contractor initially had some difficulty
in producing RCA concrete with consistent workability. These
problems were found to be due to inadequate moisture control of
the recycled aggregate stockpiles. The situation was remedied with
the installation of improved stockpile sprinkler systems. No
significant adjustments in paving operations were required by the
use of 100 percent coarse and fine RCA in the concrete (30).

In 2007, after 12 years of service, the performance of the RCA
CRCP was described as excellent, with tight crack widths, few
minor spalls, no punch-outs and no meandering cracks or spalls.
The relatively low elastic modulus of the RCA concrete and the
good bond between the old and new mortar are considered key
factors in the excellent performance of this pavement to date (30).

It should be noted that this project made TxDOT aware of the
sensitivity of concrete strength and workability to fine RCA
content. As a result, in 1999, TxDOT adopted a special provision
to limit the fine RCA content in concrete mixtures to 20 percent of
all fine aggregate. Nevertheless, this project demonstrated that
RCA fines could be used successfully at high replacement rates for
natural sand in concrete mixtures if proper steps were taken in the
design and construction of the pavement structure.

Concrete crushing operations can produce 60 percent or more
fine recycled aggregate. From an environmental standpoint, it is
essential that RCA fines be utilized completely. From a
sustainability standpoint, it makes sense to use them (to the
extent possible) in the highest possible application (i.e., in new
concrete mixtures at replacement rates of up to 30 percent for
natural aggregate, rather than in fill and soil stabilization
applications).

A.5.5. Use of RCA in Two-lift Concrete
Pavement Construction

Two-lift concrete paving involves the placement of two layers
of concrete (wet-on-wet) instead of placing a single homogeneous
layer, as is typically done in the U.S. The bottom layer typically
comprises 80-90 percent of the total pavement thickness and
generally contains locally available or recycled aggregates that are
typically available at a lower cost but may not be suitable for use
in wearing surfaces. Since the bottom lift is usually subjected to
less environmental exposure, a wide range of recycled aggregates
(including both recycled concrete and asphalt) can be used without
sacrificing the durability of the pavement system. The top layer is
typically relatively thin and usually contains dense, wear-resistant
aggregates that provide excellent durability, reduced noise and
increased pavement surface friction. These aggregates are typically
more expensive and are often imported, but their impact on the
overall pavements system cost is usually low because they are
required in relatively small quantities.

While a handful of two-lift concrete paving projects have been
constructed in the U.S., only one is known to have incorporated

recycled concrete aggregate in the pavement structure: U.S. 75 in
Iowa, which was built in 1976. This project incorporated about 60
percent recycled concrete and 40 percent recycled asphalt
pavement in the 9-inch lower lift and all virgin materials in the
4-in. top lift. The upper lift was paved 24 ft. wide and encapsulated
the 23-ft. lower lift. This pavement is still in service today.

This application is much more common in Europe (especially
Austria), where the practice began with reconstruction of the
Salzberg-Vienna A-1 concrete motorway in the late 1980s reusing
100 percent of the old concrete (57). A two-lift concrete pavement
system was developed that used the crushed pavement (both
asphalt and concrete) particles sized 4 mm–32 mm in a 19-cm
[7.5-in.] lower lift, which was capped with a 3-cm [1.2-in.] surface
layer of high-quality concrete which was used to produce an
exposed aggregate surface for friction and noise reduction. The
crushed pavement fines (sized 0 mm–4 mm) were mixed into the
old pavement frost blanket to stabilize it (57).

Savings of natural materials on the first project alone were
estimated at 205,000 metric tons of gravel, and associated savings
of 30,000 trucking operations. Overall savings were estimated at a
minimum of 10 percent when compared to the conventional use of
natural aggregate. The success of this project led to construction
of 75 km of roadway in the Salzburg and Lower Austria provinces
between 1991 and 1994 and two-lift paving using recycled
materials in the lower lift is now standard practice in Austria.

A.6. SUMMARY

Below summarizes some of the main points from this review of
pertinent publications regarding concrete made with recycled
concrete aggregate are as follows:

1. Using RCA promotes sustainability by reducing waste that
may otherwise ended up in the landfill, conserving natural
aggregate, and reducing greenhouse gasses, energy consump-
tion and production costs related to using natural aggregate.

2. RCA has different properties than NA due to attached
mortar on the RCA. Specific gravity of RCA is generally
less, and adversely, the absorption of RCA is generally
higher than natural aggregate.

3. The fresh concrete properties that may change with the use
of RCA include lower workability than NC due to its
angularity, rough surface texture, and higher absorption
capacity of RA. RAC may also have higher air content than
NC due to the air in the old mortar attached on RA.

4. Hardened concrete properties of RAC may include lower
strength (compressive, flexural, and tensile strength); higher
shrinkage, creep, CTE and permeability; lower modulus
elasticity and density. Generally RAC is less durable than
NC.

5. Many studies have been conducted examining the properties
of RAC using different RCA replacement levels up to 100
percent replacement. Some studies showed that limiting the
RCA replacement to 20 or 30 percent may have less of an
effect on the concrete properties when compared to concrete
with 100% NA.

6. Some of the challenges in using higher percentages of RCA
can be overcome by using fly ash as partial replacement of
cementitious material, reducing the mortar content adhering
to the recycled aggregate, adjusting the mix design and
mixing process, and by not using the fine portion of RCA.

7. A study on several pavements constructed by five highway
agencies (Connecticut, Kansas, Minnesota, Wisconsin and
Wyoming) using RCA showed that the performance of these
RAC pavements was comparable to the control pavement
that contained only natural aggregate, even for pavements
that contained RCA derived from D-cracked and ASR-
damaged pavements.
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APPENDIX B. BINDERS AND CONCRETE MIXTURES DATA

Figure B.1 Mill certificate for the cement used.
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Figure B.2 Mill certificate for the fly ash used in the project.
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Figure B.3 Mill test report for the cement used in the field trial placement.
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TABLE B.1
INDOT approved concrete paving mixture designs supplied by contractors

Material

IMI Berns Construction Co., Inc.

Weight (lbs)/yd3

Cement 440 515

Fly ash 100 0

Water 226 226

Fine aggregate 1414 1494

Coarse aggregate 1700 1670

Air entraining agent, fl oz 0.125–4.0 (Micro-Air) 0.5–3.0 (Daravair 1400)

Water reducer, fl oz 1.0–3.0 (Glenium 3030) 2.0–6.0 (WRDA 20)

NOTE: These designs were used as a basis for development of laboratory (L) mixture proportions shown in Table B.2.

TABLE B.2
Mixture proportions for concrete made in the laboratory (lbs/yd3)

Mixture

designation

L-M1-

1N1-C L-M2-1R-C

L-M3-

.3R.7N1-C

L-M4-

.5R.5N2-F

L-M5-

.3R.7N1-F

L-M6-

.5R.5N2-C L-M7-1R-F

L-M8-

.3R.7N2-F L-M9-1N2-F

Cement 515 515 515 440 440 515 440 440 440

Fly ash — — — 100 100 — 100 100 100

Water 217 217 217 227 227 227 227 227 227

Fine aggregate 1500 1400 1440 1420 1420 1420 1370 1420 1420

Coarse

aggregate

#8 N1

1700 — 1190 — 1141 — — — —

Coarse

aggregate

#8 N2

— — — 815 815 1141 1700

Coarse

aggregate

#8 RCA

— 1600 510 815 489 815 1570 490 —

Air entraining

agent, fl oz

0.9 0.5 0.8 0.5 0.5 1.0 1.5 0.6 0.7

Water reducer,

fl oz

2.5 2.5 5.5 1.5 1.5 3.0 3 1.5 1.5

w/cm 0.42 0.42 0.42 0.42 0.42 0.44 0.42 0.42 0.42

Slump, in 3 3.2 2.4 3.3 2.3 2.75 3.2 3.8 2.9

Air content,

pressure

method—

ACF

6.5 6.5 7 6.1 6.7 6.7 6.7 7.5 6.5

Air content,

volumetric

method

6.75 6.25 — 6.25 6.5 6.75 6.7 6.25 7

Fresh concrete

density (lbs/

ft3)

143.8 139.2 143.6 141.6 142.3 140.4 135.3 140.7 143.4

7-day flexural

strength, psi

— — 698.8 643.5 693.5 725.5 617.5 614.7 675.5

ACF 5 aggregate correction factor.

— 5 missing data.

NOTE: Air entraining agent and water reducer: fl oz/100 lbs cementitious.
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APPENDIX C. AGGREGATE TEST RESULTS

Figure C.1 (a) and (b) show respectively, the gradation curves for
fine and coarse aggregate used in the study along with the associated
INDOT specification limits for #23 and #8 aggregates. The #8
RCA used had less of the minus 4.75 mm size material than natural
#8 aggregates used. The combined aggregate gradations for all
mixtures used in this research fell within INDOT’s upper and lower
limit but when plotted against the ‘‘8-18’’ band [18], all gradations
had excessive amounts of aggregate retained on K in. sieve and were
deficient in material retained on the #8 (see Figure C.2).

Based on the coarseness factor (CF) and workability factor
(WF) chart all combined gradations used, were classified as sandy
gradation (see Figure C.3). Their CF ranged from 71.5 to 74.8 and
WF from 44.7 to 47.9. The proportions of the coarse to fine
aggregates plays a big role in determining the characteristic of the
combined gradation. In this research, the coarse to fine aggregates
ratio was 53:47 by mass. The relatively high percentage (47%) of
fine aggregate in mixtures tends to increase the workability factor
since more fines means more aggregates passing #8 sieve.

The L.A. abrasion test results given in Table C.1 indicate that
#8N1 coarse aggregate was the most resistant to abrasion while
#8R had the lowest resistance. Of the four aggregate sources used,
it appears that aggregates with higher specific gravity were more
resistant to L.A. Abrasion degradation (shown in Figure.C.4). All
the aggregates satisfied INDOT’s L.A. abrasion test requirement
for AP aggregate which limits the mass loss to 40% (16).

INDOT’s maximum allowable mass loss for ITM 209,
Soundness of Aggregates by Brine Freeze and Thaw for #8 AP
aggregate is 30% and for fine aggregate is 12%. The data
presented in Table C.2 for #8N1 is based on INDOT historical
data from 2001 to 2009, while for #23 sand is based on INDOT
historical data from 2004 to 2010 for aggregate taken from the
same source and produced by the same producer. The test results
presented for 8N2 and 8R are based on tests completed on
material used in this study. All aggregates used in this study
passed INDOT’s requirements for AP aggregate and use in
concrete paving.

INDOT specifications for AP aggregate also requires passing
the sodium sulfate soundness test with 12% loss or less, but by
option of the Engineer the brine freeze and thaw test may be

accepted. Other researchers have found that sulfate soundness
tests do not accurately determine RCA quality (2) therefore only
the brine freeze and thaw test were considered in this study.

As seen in the results for the organic impurities test shown in
Figure C.5, the colors of the liquid of three samples are lighter
than No. 3 standard organic plate color. These results indicate
that the sand used in this research does not contain high level of
organic compound which might possibly harm the concrete.

The well-developed modal analysis method of point counting
was used (17) to determine what percentage of the RCA used for
this study was old mortar, what percentage was original aggregate
and what percentage was aged asphalt or other material.

The average D50 aggregate size of the RCA used in this project
was approximately K-in. (i.e., the ratio of percent passing to
percent retained on the K-in. sieve was approximately 50:50). First
the RCA was split into two different size fractions, plus K-in. and
minus K-in., from which 6-in. diameter cylinders were made using
epoxy as the binder. Each cylinder was sliced into 1-in. thick
sections and the sawn surfaces ground smooth to create a flat
surface for examination (as shown in Figure C.6). A grid pattern
was established over the sawn surface and an observation made at
each point that the grid lines intersected. Slight magnification was
used when necessary for proper identification (results are summar-
ized in Table C.3).

The combined total values shown in Table C.3 are based on the
assumption that 50% of the aggregate passed and 50% was
retained on the K-in. sieve. Nearly 30% of the RCA is old mortar
and 2.6% is aged asphalt. There was a slightly higher percentage of
old paste in the smaller sized RCA, and the majority of the asphalt
pieces were in the smaller sized fractions.

To determine the water soluble ions concentration of coarse
aggregates used in this research, the coarse aggregates were
crushed and 20 grams of crushed aggregate passing #100 sieve
from each aggregate was diluted with 40 ml of deionized water.
The material was soaked overnight and was centrifuged to
separate the liquid and the solid particles. Finally, the liquid was
filtered and the final solution sampled for testing. The potassium
ion was determined by using Atomic Absorption/Emission
Spectrophotometer (VarianH SpectrAA–20) while the chloride
and sulfate ions were measured by using Dionex Ion
Chromatograph with IonpacH AS4A Analytical column.
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Figure C.1 Aggregates gradation curves for (a) fine aggregate; (b) coarse aggregate; (c) combined aggregate gradations
(laboratory and plant mixtures).
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Figure C.2 Combined aggregate gradations of plant mixtures subjected to ‘‘8-18’’ bands; (a) Iowa and MnDOT ‘‘8-18’’ bands, (b)
Shilstone and USAF ‘‘8-18’’ bands.
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Figure C.3 Coarseness and workability factors for modified (G-1, G-2 and G-3) and non-modified gradations.

TABLE C.1
L.A. abrasion test results

Abrasion test (AASHTO T 96)

Coarse aggregate Sample Original mass, OD (gr) Final mass, OD (gr) Mass loss, % Average mass loss, %

#8 N1 1 5001 3571 29 29

2 5000 3559 29

#8 N2 1 5001 3471 31 31

2 5000 3457 31

#8 R 1 5000 3177 36 36

2 5001 3182 36

#11 R 1 5002 3298 34 34

2 5002 3294 34

TABLE C.2
Soundness of aggregates by brine freeze and thaw

Aggregate

% mass loss

Actual value INDOT max. limit

#8N1 0.1–0.5* 30

#8N2 0.9 30

#8R 16.4 30

#23 Sand 0.9–9.5* 12

*From INDOT historical data.

Figure C.4 Specific gravity of coarse aggregates vs. % mass
loss during L.A. abrasion test.
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Figure C.5 The comparison between the color of deleterious samples with standard color organic plate.

Figure C.6 Examples of the sawn and ground surfaces of #8 RCA embedded in epoxy examined for determining the
percent mortar.

TABLE C.3
Point count results for estimating percent mortar attached to the RCA

RCA size fraction # of particles examined

Mortar-free aggregate

surface

Mortar present on

aggregate surface Aged asphalt % of total mass

+1/2-in 176 71.6% 27.4% 1.0% 51%

- 1/2-in 183 65.2% 30.5% 4.3% 49%

Combined total 359 68.5% 28.9% 2.6%
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APPENDIX D. CONCRETE TEST RESULTS

The average unit weight of fresh concrete decreased as the
amount of RCA increased as shown in Figure D.1.

The percent air for the fresh concrete was measured using both
the volumetric and the pressure meter method. The difference in
results between these two methods was small, and varied from
0.0% to 0.75% air with an average difference of 0.27% air for 18
different concrete mixtures (see Figure D.2). No trend is apparent.

The air dry density of plain concrete decreased by approxi-
mately 5.4% when N1 coarse aggregate was replaced by 100%
RCA (from 148.9 lbs/ft3 vs. 140.9 lbs/ft3) (as shown in
Figure D.3). The density of fly ash concrete decreased by
approximately 3.5% when N2 coarse aggregate was replaced by
100% RCA (145.5 lbs/ft3 vs. 140.4 lbs/ft3 respectively).

Rapid Chloride Permeability (RCP) test results—all charges
passed presented in this document have been adjusted for the
‘‘joule effect’’ which accounts for change in the conductivity of the
solution with the change of the temperature during the test (58).
The final passing charges were derived from Eq. D.1 (58).

Q0~e
ln Qc6hrð Þzb 1=dT{1=273

� �h i
ðD:1Þ

Where:
Q0 5 joule effect adjusted charge passed during the 6-hour

RCP test
b 5 experimental constant equal to 1,245
Qc6hr 5 original charge passed through the 6-hour RCP test
dT 5 difference in temperature increment (in Kelvin) during

the 6-hour test
Although the coulomb value changed when Joule affect was

taken into account this change did not alter chloride ion
penetrability rating in any of the samples tested (as shown in
Table D.2).

The results of the RCP test can also be used to calculate the
equivalent steady-state chloride diffusion coefficient from Nernst-
Plank equation (Eq. D.2) (58). The chloride diffusion coefficient is
an important parameter that can be used to predict the time of
corrosion initiation.

D~
RTKV

zC0F E=Lð ÞA ðD:2Þ

Where:
R: universal gas constant (8.314 joule/mole/K [1.98 calorie/K/

mole])
T: the absolute temperature in Kelvin
V: volume of the solution (250 ml)

z: valence of chloride ions (in this case z 5 1)
C0: chloride ion concentration (0.51 mole/l [14.52 mole/ft3]),
E: applied electrical potential (60 Vdc)
F: Faraday constant (96485.3415 sA/mole)
L: thickness of the concrete specimen (2 in. [50 mm])
A: area of the sample exposed to NaCl solution
K: chloride migration rate (mol/L/s)
The chloride migration rate itself can be determined by using

formula in Eq. D.3 (58).

K~
JA

V
ðD:3Þ

Where:
J: flux of the chloride ion
A: area of the sample exposed to NaCl solution
V: volume of the solution (250 ml)
The ionic flux of chloride ion (J) can be calculated by Eq. D.4

(58).

J~
I

zFA
ðD:4Þ

Where:
I: adjusted average electrical current, I~

Q0

time of exp eriment sð Þ(58)
A: area of the sample exposed to NaCl solution
V: volume of the solution (250 ml)
The calculated values of the chloride diffusion coefficient for

each of the plant mixtures used in the study are given in
Table D.3.

The diffusion coefficient indicates the rate of the ion to
penetrate through the concrete matrix. The higher the diffusion
coefficient the faster it can penetrate the concrete.

An attempt to find a quicker and simpler way in determining
the RCP test results was done in this study by predicting the final
charge passed. The final passing charge was predicted by using the
simple formula as shown in Eq. D.5 (58).

Qpred~I0|t ðD:5Þ

Where:
Qpred 5 predicted passing charge, Coulomb
Io 5 initial current (measured at the start of the experiment

mA)
t 5 time of experiment, seconds (6 hrs 5 21600 s)
Another approach to predict the total charge passed in an easier

way was by finding the correlation between charges passed with
theoretical bulk resistance (R). The bulk resistance of the concrete
can be calculated simply by using formula in Eq. D.6 (59).

Figure D.1 Average unit weight of fresh concrete with different percentages of RCA.
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R~
V

I
ðD:6Þ

Where:
R: bulk resistance, ohm
V: applied voltage, 60 Volt
I: initial current, ampere
As expected, the relationship between bulk resistance and

charge passed from RCP test results is linear (see Figure 2.5). This
is because both of these tests are measuring the same property, i.e.,
the conductivity of the pore solution. The higher values of the bulk
resistance are associated with lower cumulative charge passed.

Rapid chloride migration (RCM) test was conducted to confirm
the reliability of RCP test results due to the consideration of Joule
effect that might occur during RCP test which may lead to
inaccurate test results as discussed in previous section.

The results of RCM test were obtained using 56-day-old
samples. Instead of using a special test cells as specified in NT
build 492 (23), the tests were performed with the same set of cells
used for the RCP test (see Figure D.6). Except for this
modification, the remaining parts of the test itself complied with
the requirements of the NT build 492.

Parameters obtained from the experiment are charge passed,
temperatures and currents applied during the experiment. After
the test finished (generally after 24 hours), the specimen was split
axially into two pieces in order to measure the penetration depth
of chloride ions. The freshly split section of the sample was then
sprayed with silver nitrate. The average depth of chloride ion
penetration was measured from the mark made visible by the
white silver chloride precipitate that became apparent after about
15 minutes of spraying. The average depth of chloride ion
penetration along with the other obtained parameters then were
used to determine the non-steady-state migration coefficient
(Dnssm) using the formula in Eq. D.7 (23).

Dnssm~
0:0239 273zTð Þl

U{Zð Þt xd{0:0238

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
273zTð Þlxd

U{Z

r !
ðD:7Þ

Where:
Dnssm: non-steady-state migration coefficient, 610212 m2/s
U: absolute value of the applied voltage, V
T: average value of the initial and final temperatures in the

anolyte solution, uC

Figure D.2 Comparison between volume and pressure method results of % air in fresh concrete.

TABLE D.1
Chloride ion penetrability of concretes from different mixtures

Mixture designation

28 days 56 days

Final charge, Q (Coulomb) Chloride ion penetrability Final charge, Q (Coulomb) Chloride ion penetrability

P-M1-1N1-C 4285 High 3208 Moderate

P-M2-1R-C 4826 High 4198 High

P-M3-.3R.7N1-C 3909 Moderate 2999 Moderate

P-M4-.5R.5N2-F — — 2255 Moderate

P-M5-.3R.7N1-F 2863 Moderate 2667 Moderate

P-M6-.5R.5N2-C — — 4469 High

P-M7-1R-F 4852 High 3152 Moderate

P-M8-.3R.7N2-F 3497 Moderate 2609 Moderate

P-M9-1N2-F 3213 Moderate 1799 Low

P-M10-1N1-C 3538 Moderate 3250 Moderate

NOTE: — 5 missing data.
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L: thickness of the specimen, mm
xd: average value of the penetration depth, mm
t: test duration, hour

The value of Dnssm indicates concrete resistance to chloride
ingress. The Dnssm value can be used to classify concrete’s resistance
to chloride ion penetration into the following categories (60):

N Dnssm , 2x10212 m2/s: very good resistance against chloride
ingress

N 2x10212 m2/s , Dnssm , 8.10212 m2/s: good resistance
against chloride ingress

N 8x10212m2/s , Dnssm , 16.10212 m2/s: moderate resistance
against chloride ingress

N Dnssm . 16x10212 m2/s: not suitable for aggressive environ-
ment (high)

Table D.4 lists the calculated values of the Dnssm for all plant
mixtures used in the study.

Only one mixture (M6—plain concrete with 50% RCA) would
be classified as not suitable for aggressive environment (Dnssm 5

16.9610212 m2/s). This value is about 36% higher than the
control concrete (M1 - Dnssm 5 12.4610212 m2/s). All others
concretes can be classified as having moderate resistance against
chloride ion penetration.

The fly ash concretes had lower Dnssm than plain concrete with
the same amount of RCA (M9 vs. M1 and M10, M5 and M8 vs.
M3, M4 vs. M6), except for concrete with 100% RCA (M7 vs.
M2). For concrete with 50% RCA, the Dnssm of plain concrete
(M6) was 44% higher than the fly ash concrete (M4). This trend
indicated that fly ash improved the chloride ion penetrability
resistance of RCA concrete when the portion of RCA is up to 50%
of the total coarse aggregate.

For plain concrete, the high variability in the results made it
difficult to predict the effect of RCA replacement levels on the
chloride ion penetrability. In fly ash concrete, the presence of 30%
RCA (M5 and M8) did not show significant effects on the Dnssm

(up to 9% difference) compared with the fly ash concrete without
RCA (M9). The same trend occurred on for fly ash concrete with
50% RCA compared to fly ash concrete without RCA where the
difference of Dnssm was about 7% (M4 vs. M9). A more significant
increase (45%) of Dnssm values was found when comparing the fly
ash concrete with 100% RCA (M7) to the fly ash concrete without
RCA (M9). This is an indication that high levels of RCA (100%
replacement level) worsened the chloride ion penetrability
resistance of concrete even with the presence of fly ash.

Figure D.8 indicates that the resistivity based on surface
measurements was higher than the resistivity determined based
on EIS measurements. In addition to age, the difference in results
may be due, in part, to the different way the samples were
conditioned. The EIS samples (bulk resistivity samples) were
conditioned the same way as the RCP samples (as per AASHTO T
277 (61)). The samples for surface resistivity measurement were
taken directly from the curing room (23¡2C and 95% relative
humidity) just before performing the test. Although their surface
remained moist during the test, it is very likely that the vacuum
saturation applied to the EIS samples increased their saturation
level and thus increased the conductivity (decreased the resistivity).

The length change measurements from the AASHTO T 161
concrete freezing and thaw test are shown in Figure D.9. As noted
in Section 2.2.2.2 the comparator was damaged during the testing
of the first five mixtures (P-M1, P-M2, P-M3, P-M4, and P-M5)
and those length change measurements are invalid (showing
unrealistic values, for example ¡1.2% expansion for a known
high quality AP aggregate and no evidence of cracking in the
beams).

TABLE D.2
RCP test 56-day results with and without temperature correction

Mixture designation Final charge, Q (Coulomb) Chloride ion penetrability

P-M1-1N1-C 3743 3208 Moderate

P-M2-1R-C 5785 4198 High

P-M3-.3R.7N1-C 3768 2999 Moderate

P-M4-.5R.5N2-F 2885 2255 Moderate

P-M5-.3R.7N1-F 2925 2667 Moderate

P-M6-.5R.5N2-C 5009 4469 High

P-M7-1R-F 3665 3152 Moderate

P-M8-.3R.7N2-F 2910 2609 Moderate

P-M9-1N2-F 1893 1799 Low

P-M10-1N1-C 3643 3250 Moderate

NOTE: Boldface italics indicate with temperature correction. All samples were tested at 56-day.

TABLE D.3
Average chloride diffusion coefficient

Mixture designation

Diff. coefficient, 610212 m2/s (Nernst-Plank)

28 days 56 days

P-M1-1N1-C 1.05E-11 7.98E-12

P-M2-1R-C 1.18E-11 1.07E-11

P-M3-.3R.7N1-C 9.53E-12 7.56E-12

P-M4-.5R.5N2-F — 5.54E-12

P-M5-.3R.7N1-F 7.01E-12 6.52E-12

P-M6-.5R.5N2-C — 1.09E-11

P-M7-1R-F 1.19E-11 7.71E-12

P-M8-.3R.7N2-F 8.50E-12 6.36E-12

P-M9-1N2-F 7.83E-12 4.40E-12

P-M10-1N1-C 8.63E-12 7.95E-12

NOTE: — 5 missing data.
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TABLE D.4
The non-steady-state migration coefficients (Dnssm) of concrete from the different plant mixtures

Mixture designation Dnssm (610212 m2/s) Classification of resistance to chloride ion penetration

P-M1-1N1-C 12.4 Moderate

P-M2-1R-C 10.6 Moderate

P-M3-.3R.7N1-C 11.8 Moderate

P-M4-.5R.5N2-F 9.5 Moderate

P-M5-.3R.7N1-F 9.2 Moderate

P-M6-.5R.5N2-C 16.9 Poor

P-M7-1R-F 14.7 Moderate

P-M8-.3R.7N2-F 11.1 Moderate

P-M9-1N2-F 10.2 Moderate

P-M10-1N1-C 16.0 Moderate

TABLE D.5
Test results from RCPT, RCM and EIS test

Mixture designation

Average charge passed,

Coulomb

Average bulk

resistance, Ohms

Nernst-Plank

diff. coefficient

(610212)

Non-steady-

state migration

coefficient,

Dnssm (610212

m2/s)

Resistivity, Kohm-cm

RCPT RCPT* CTH RCPT CTH RCPT CTH

EIS test

RCPT’s

sample CTH’s sample

P-M1-1N1-C 3743 3208 5034 398 — 2.00 12.38 6.36 —

P-M2-1R-C 5785 4198 4789 302 430 0.89 10.63 4.83 6.85

P-M3-.3R.7N1-C 3768 2999 4901 410 — 0.47 11.81 6.54 —

P-M4-.5R.5N2-F 2885 2255 3802 467 470 1.39 9.50 7.45 7.49

P-M5-.3R.7N1-F 2925 2667 3852 548 605 1.63 9.24 8.75 9.65

P-M6-.5R.5N2-C 5009 4469 4681 335 321 2.73 16.89 5.34 5.12

P-M7-1R-F 3665 3152 6037 440 424 1.93 14.72 7.02 6.77

P-M8-.3R.7N2-F 2910 2609 5174 548 509 1.59 11.14 8.75 8.12

P-M9-1N2-F 1893 1799 3891 681 615 1.10 10.18 10.87 9.81

P-M10-1N1-C 3643 3250 5710 439 495 1.99 15.97 7.01 7.89

*With temperature correction.

NOTE: All samples tested at 56-day.

TABLE D.6
Average surface resistance and comparison between chloride ion penetrability of concretes based on surface resistivity test and RCP test

Mixture designation

Surface resistivity test

Chloride ion penetrability (at 56 days,

RCP test) (AASHTO T 277)Surface resistance, K-ohm. cm

Chloride ion penetrability, (age of

sample, days) (AASHTO TP 95)

P-M1-1N1-C — — Moderate

P-M2-1R-C 11.5 High (176) High

P-M3-.3R.7N1-C 15.4 Moderate (174) Moderate

P-M4-.5R.5N2-F 25.2 Low (155) Moderate

P-M5-.3R.7N1-F 24.6 Low (126) Moderate

P-M6-.5R.5N2-C 11.0 High (105) High

P-M7-1R-F 13.8 Moderate (69) Moderate

P-M8-.3R.7N2-F 14.1 Moderate (56) Moderate

P-M9-1N2-F 15.6 Moderate (56) Low

P-M10-1N1-C 12.1 Moderate (56) Moderate

NOTE: — 5 missing data. Air entraining agent and water reducer: fl oz/100 lbs cementitious.
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Figure D.3 Average air dry density of concrete with different percentages of RCA.

Figure D.4 Compressive strengths of concrete with different type of natural aggregates.
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Figure D.5 Flexural strength of plain and fly ash concrete with 50% and 100% RCA content.

Figure D.8 Resistivity (56-day, EIS test) vs. surface resistivity.

Figure D.7 Correlation between concrete’s resistivity (from
EIS test) and total charge passed (from RCP test).

Figure D.6 RCM test setup.
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Figure D.9 Length change on F/T beams.
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APPENDIX E. MODIFIED GRADATION

The replacement levels of RCA used in the mixtures with
modified gradations were 30% (OM-2), 55% (OM-1 and OM-5) and
100% (OM-3 and OM-4). The decision to use 55% (30%#8 +
25%#11) level of replacement in OM-1 and OM-5 (rather than 50%,
which was used in the lab and plant mixtures), was based on the fact
that this replacement level had been found to generate a gradation
which was closer to well graded area on coarseness factor chart.

When compared to the lab and plant mixtures, the mixtures
with modified gradation had 25%–30% (base on weight) of #11
aggregates as part of the coarse aggregates.

The modified gradations were more of continuous gradations
and plotted closer to within the ‘‘8-18’’ band (as seen in
Figure E.1).

The results of air content and slump of mixtures with modified
gradations (from now on referred to as modified mixtures) are
shown Table E.2.

Figure E.1 Combined aggregate gradations of optimized mixtures subjected to ‘‘8-18’’ bands; (a) Iowa and MnDOT ‘‘8-18’’
bands, (b) Shilstone and USAF ‘‘8-18’’ bands.
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Figure E.2 The average values of 7-day flexural strength for concretes with non-modified and modified gradation.

Figure E.3 7-day compressive strength of concretes from various mixtures.
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Figure E.4 28-day compressive strength of concretes from various mixture.

Figure E.5 The average values of charge passed for 56-day old concrete specimens from non-modified (plant) and modified
gradation mixtures.
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TABLE E.1
Mixture proportions with modified gradation for concrete made in the laboratory (lbs/yd3)

Materials

O-M1-.3#8R.25#

11R.45#8N1-C

O-M2-.3#

11R.7#8N1-C

O-M3-

.3#11R.7#8R-F

O-M4-.3#

11R.7#8R-C

O-M5-.3#8R.25#

11R.45#8N1-F

O-M6-.3#

11N1.7#8N1-C

Cement 515 515 400 515 440 515

Fly ash — — 100 — 100 —

Water 211.2 215.0 210.0 232.0 225.0 230.0

Fine aggregate 1330 1350 1300 1300 1320 1350

Coarse aggregate #8N1 790 1260 — — 775 1300

Coarse aggregate #11N1 — — — — — 550

Coarse aggregate #8R 530 — 1200 1200 515 —

Coarse aggregate #11R 450 535 510 510 435 —

Combined gradation # G-1 G-2 G-3 G-3 G-1 G-2

Air entraining agent, fl oz 0.8 0.5 0.9 0.9 0.8 0.8

Water reducer, fl oz 2.0 1.5 1.5 1.1 2.0 2.0

w/cm 0.41 0.42 0.42 0.45 0.42 0.45

NOTE: — 5 missing data.

TABLE E.2
Slump and air content values of mixtures with modified gradations

Mixture designation

O-M1-.3#8R.25

#11R.45#8N1-C

O-M2-.3#

11R.7#8N1-C

O-M3-.3#

11R.7#8R-F

O-M4-.3#

11R.7#8R-C

O-M5-.3#

8R.25#11R.45

#8N1-F

O-M6-.3#

11N1.7#8N1-C Target range

Slump, in 3.3 1.75 3 1.5 1.7 1.5 1.25-3.00

Air content, %

(volumetric method)

6.5 6 6.5 6 7 6.25 6.5 (5.7-8.9)*

*Allowable range.

TABLE E.3
Comparison of plastic and hardened concrete properties of modified and plant concrete

Phase

O-M1 vs.P-M5 O-M2 vs. P-M3 O-M3 vs P-M7 O-M4 vs P-M2 O-M5 vs P-M4 O-M6 vs P-M1/10

WR 2 1.7 1.5 2 1.5 2.4 1.1 2.0 2.0 2.1 2.0 1.9/2.0

w/cm 0.41 0.43 0.42 0.43 0.42 0.40 0.45 0.47 0.42 0.40 0.45 0.44/0.42

Plastic Slump 3.3 in 1.5 in 1.75 in 1.7 in 3.0 in 1.7 in 1.5 in 2.1 in 1.7 in 1.7 in 1.5 in 2.1/2.0

Benefit Possible Yes Possible Yes No No

Hardened Flexural Sl Increase Sl decrease Lg decrease Decrease Sl decrease Lg increase

Compr Decrease Decrease Sl decrease Similar Sl decrease Similar

RCP Sl improved Worse Sl improved Worse Sl improved Sl improved

Benefit Possible No No No No Yes

NOTE: Lg 5 largely; Sl 5 slightly.
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APPENDIX F. BENEFIT-COST ANALYSIS MODEL

Appendix F is available here: http://docs.lib.purdue.edu/cgi/viewcontent.cgi?filename51&article53040context5jtrptype5additional
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